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PEEFACE.

In this edition, as in the last, many additions have been made

to every part of the subject. This has necessarily enlarged the

size of the book. If this be considered an evil I can only reply

that the subject of Eigid Dynamics is so vast and has so many

applications that a small book can only be made by omitting

or treating imperfectly some of its details. I have therefore

attempted to supply some information at least on all the chief

points of the subject, preferring that the reader should select

those parts which he may wish to study rather than that he

should find some important theory altogether unnoticed.

In order to render the book less bulky for the student, it

has been divided into two parts. In the first volume there will be

found all the elements of the subject together with some methods

which are intended for the more advanced student. In the second

part the higher applications will be given. In order that the

plan of the book may be understood a short summary of the

subjects to be treated of in the second volume has been added

to the table of contents.

The subject of Rigid Dynamics has always been found a

difficult one by the student and is seldom properly und

ai the lirst^YgaTtilQgrriJJfte great' '5,dvanta£fe"'ot this (iivision of

thework into two volumes is that space for greater fulness of

explanation has been found. It is hoped therefore that this

edition will be found easier than any of the preceding. There is
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also the advantage that the student who wishes to confine his

reading to the more elementary portions will take a more distinct

view of those portions when they are separated from the rest.

As in the former editions, each chapter has been made as

far as possible complete in itself, so that all that relates to any

one part of the subject may be found in the same place. This

arrangement will be found convenient for those who are already

acquainted with dynamics, as it will enable them to direct

their attention to those parts in which they may feel most in-

terested. It will also enable the student to select his own order

of reading. The student who is just beginning dynamics may

not wish to be delayed by a long chapter of preliminary analysis

before he enters on the real subject of the book. He may

therefore begin at D'Alembert's Principle and only read those

parts of Chapter I. to which reference is made. Others may

also wish to pass on as soon as possible to the great principles

of Angular Momentum and Vis Viva. Though a different order

will be found advisable for different readers, I have ventured to

indicate a list of Articles to which those who are just beginning

dynamics should first turn their attention.

It will be observed that a chapter has been devoted to the

discussion of Motion in Two Dimensions. This course has been

adopted because it seemed expedient to separate the difficulties

of dynamics from those of solid geometry.

A slight historical notice of each result has been attempted

whenever it could be briefly done. This course,' if not carried

too far, will it is believed be found to add greatly to the interest

of the subject. But the success of this attempt is far from com-

plete. In the earlier history there was the guidance of Montucla,

and further on there was Prof. Cayley's Report to the British

Association. With the help of these the task became compara-

tively easy; but in some other portions the number of memoirs

which have been written is so vast, that anything but the slightest

notice has been rendered impossible. A useful theorem is many
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times discovered, and probably each time with some variations.

It is thus often difficult to ascertain who is the first author. It

has therefore been found necessary to correct some of the refer-

ences given in the last two editions, and to add references where

there were none before. It has not however been thought neces-

sary to refer to the author's own additions to the subject.

Throughout each chapter there will be found numerous ex-

amples, many very easy and others which are intended for the

more advanced student. In order to obtain as great a variety

of problems as possible, a further collection has been added at

the end of each chapter, taken from the Examination Papers

which have been set in the University and in the Colleges.

It is hoped that this selection of problems by so many different

examiners may present so great u variety of illustrations of

dynamical principles that the student may be led to acquire an

equal facility in solving all kinds of problems.

In constructing the examples in each chapter my first care

has been to follow closely the principle which each example has

been intended to illustrate. But such instruments or applications

of principles have been sought for as have been found useful in

practice. Whenever some useful instrument has been found,

which did not require so lengthy a description as to unfit it for

an illustration, it has been preferred as an example to a merely

curious and artificial construction.

I cannot conclude without expressing how much I am indebted

to Mr A. N. Whitehead and Mr E. G. Gallop of Trinity College for

their assistance in correcting many of the proof sheets. It is

-hoped that the work, having had the advantage of their revision,

will be found clear of serious errors.

EDWARD J. ROUTH.

Petebhodse,

November 4, 1882.
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CHAPTER I.

ON FINDING MOMENTS OF INERTIA BY INTEGRATION.

1. In the subsequent pages of this work it will be found
that certain integrals continually recur. It'is therefore convenient
to collect these into a preliminary chapter for reference. Though
the bearing of these on Dynamics may not be obvious beforehand,

yet the student may be assured that it is as useful to be able to

write down moments of inertia with facility as it is to be able

to quote the centres of gravity of the elementary bodies.

In addition however to these necessary propositions there are

many others which are useful as giving a more complete view of

the arrangement of the axes of inertia in a body. These also

have been included in this chapter though they are not of the

same importance as the former.

2. All the integrals used in Dynamics as well as those used
in Statics and some other branches of Mixed Mathematics are

included in the one form

jjjos^y^z^dxdydz,

where (a, /8, 7) have particular values. In Statics two of these

three exponents are usually zero, and the third is either unity

or zero, according as we wish to find the numerator or denomi-

nator of a co-ordinate of the centre of gravity. In Dynamics
of the three exponents one is zero, and the sum of the other two
is usually equal to 2. The integral in all its generality has not

yet been fully discussed, probably because only certain cases have

any real utility. In the case in which the body considered is

a homogeneous ellipsoid the value of the general integral has

been found in gamma functions by Lejeune Dirichlet in Vol. iv.

of Liouville's Journal. His results were afterwards extended by
Liouville in the same volume to the case of a heterogeneous

ellipsoid in . which the strata of uniform density are similar

dlipsoids.

In this treatise, it is intended to restrict ourselves to the con-

sideration of moments and products of inertia, as being the only

cases of the integral which are useful in Dynamics.

'^'IR.D. 1



2 MOMENTS OF INERTIA.

^« 3. Definitions. If the mass of every particle of a material

.| system be multiplied by the square of its distance from a straight

aline, the sum of the products so formed is called the moment of
f^nertia of the system about that line.

If M be the mass of a system and k be such a quantity thkt

Mk^ is its moment of inertia about a given straight line, then k
is called the radius of gyration of the system about that line.

The term " moment of inertia " was introduced by Euler, and
has now got into general use wherever Rigid Dynamics is studied.

It will be convenient for us to use the following additional terms.

If the mass of every particle of a material system be multi-

plied by the square of its distance from a given plane or from a
given point, the sum of the products so formed is called the

moment of inertia of the system with reference to that plane or

that point.

If two straight lines Ox, Oy be taken as axes, and if the mass
of every particle of the system be multiplied by its two co-

ordinates X, y, the sum of the products so formed is called the

product of inertia of the system about those two axes.

This might, perhaps more conveniently, be called the product

of inertia of the system with reference to the two co-ordinate

planes ccz, yz.

The term moment of inertia with regard to a plane seems to have been first used
by M. Binet in the Journal Polytechnique, 1813.

4. Let a body be referred to any rectangular axes Ox, Oy,
Oz meeting in a point 0, and let x, y, z be the co-ordinates of any
particle m, then according to these definitions the moments or
inertia about the axes of x, y, z respectively will be

il = Sm(3/«+ s*), B^tmiz'+ a?), C=Xm{a? + f).

The moments of inertia with regard to the planes yz, zx, xyj
respectively, will be

A'^tm^, B' = tmy\ C ^tmz".

The products of inertia with regard to the axes yz, zx, xyl
will be

D = Xmyz, E= %mzx, F= Xmxy.

Lastly, the moment of inertia with regard to the origin will b(

E= Xm{x' + y'+ z') = Xmr\

where r is the distance of the particle m from the origin.

5. Elementary Propositions. The following propositiong-
may be established without difficulty, and will serve as illustrations
of the preceding definitions.
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(1) The three moments of inertia A, B, G about three
rectangular axes are such that the sum of any two of them is

greater than the third.

(2) The sum of the moments of inertia about any three ;

rectangular axes meeting at a given point is always the same;
)

and is equal to twice the moment of inertia with respect to that
j

point.

For ^ +B+ C=22wt(x* + y2 + 22) =227/17^, and is therefore independent of the
directions of the axes.

• (3) The sum of the moments of inertia of a system with
reference to any plane through a given point and its normal at

that point is constant and equal to the moment of inertia of the
system with reference to that point.

Take the given point as origin and the plane as the plane of xy, then
C" + C=27nr2, which is independent of the directions of the axes.

Hence we infer that

A'=i{B+C-A), B'=^{G+A-B), and C'=^{A + B-C).

*(4) Any product of inertia as D cannot numerically be
so great aa ^A.

(5) If A, B, F be the moments and product of inertia of a
lamina about two rectangular axes in its plane, then AB is greater

than r.
If f be any quantity we have At^-\-'iFt+ B=1.m{yt-^xf=& positive quantity.

Hence the roots of the quadratic At^-k-2Ft+B=0 are imaginary, and therefore

AB>FK

'(6) Prove that for any body

{A-\-B-C){B+C-A)>4,E\-
{A-\-B- C) {B+ G-A) {G+A- B) > 8DEF.

(7) Prove that the moment of inertia of the surface of a

hemisphere of radius a and mass M about the diameter perpen-

dicular to the base is ilffa*.

For, complete the sphere, then by (2) the moment of inertia about any diameter

is two-thirds of the moment of inertia with respect to the point.

6. It is clear that the process of finding moments and products

of inertia is merely that of integration. We may illustrate this

by the following example.

To find the moment of inertia of a uniform triangular plate

about an axis in its plane passing through one angular point.

Let ABG hQ the triangle, Ay the axis about which the

moment is required. Draw Ax perpendicular to Ay and produce

BG to meet Ay in D. The given triangle ABG may be regarded

as the difference of the triangles ABD, AGD. Let us then first

1—2
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find the moment of inertia of ABD. Let PQFQ' be an ele-

mentary area whose sides PQ, P'Q' are parallel to the base AD,

and let PQ cut Ax in M. Let ^ be the distance of the angular

point B from the axis Ay, AM= x and AD = I.

Then the elementary area PQP'Q' is clearly I

j3-x

^-x
/8

dx, and

its moment of inertia about Ai/ is fil—^— tZa; . x\ where fi is the

mass per unit of area,

triangle ABD
Hence the moment of inertia of the

12*

Similarly if 7 be the distance of the angular point C fi^m the

axis Ay, the moment of inertia of the triangle ACD is fil hi.

Hence the moment of inertia of the given triangle ABC is

A' To (^' ~ 7^). Now 5 1^ and ^ ?7 are the areas of the triangles

ABD, A CD. Hence if M be the mass of the triangle ABC, the

moment of inertia of the triangle about the axis Ay is

^(^ + ^7 + 7*).

Ex. If each element of the mass of the triangle be multiplied by the nth power

of its distance from the straight line through the angle A, then it may be proved

in the same way that the sum of the products is

2M /5*+^ - 7"+i

(n + l){n + 2) '^^ •
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7. When the body is a lamina the moment of inertia about an
axis perpendicular to its plane is equal to the sum of the moments
of inertia about any two rectangular axes in its plane drawn from
the point where the former axis meets the plane.

For let the axis of z be taken as the normal to the plane, then,
if A, B, (7 be the moments of inertia about the axes, we have,

A='Zmy\ B^trnx", G=tm{x^ ^f),
and therefore C= A + B.

We may apply this theorem to the case of the triangle. Let
yS', 7', be the distances of the points B, C from the axis Ax. Then
the moment of inertia of the triangle about a normal to the plane
of the triangle through the point A is

8. Reference Table. The following moments of inertia

occur so frequently that they have been collected together for

reference. The reader is advised to commit to memory the follow-

ing table

:

The moment of inertia of

(1) A rectangle whose sides are 2a and 26

about an axis through its centre in its plane per-] _ a'

pendicular to the side 2a |
~ ^^^ 3 '

about an axis through its centre perpendicu-] _ a^+b*
lar to its plane

J

~ ^^^^ ~"3~ '

(2) An ellipse semi-axes a and b

about the major a.is a = mass |\

mmor axis = mass -7 ,

4

about an axis perpendicular to its planel _ a^+b^
through the centre

J

~ ^^ ~T~ '

In the particular case of a circle of radius a, the moment of

inertia about a diameter is mass -^ , and about a perpendicular to

its plane through the centre mass -^

.

(3) An ellipsoid semi-axes a,b,c

about the axis a = mass —=—

.
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In the particular case of a sphere of radius a the moment of

2
inertia about a diameter = mass -= a\

5

(4) A right solid whose sides are 2a, 26, 2c

about an axis through its centre perpendicular) 6* + c*

to the plane containing the sides b and c \ 3 *

These results may be all included in one rule, which the

author has long used as an assistance to the memory.

Moment of inertia! (sum of squares of perpendicular

about an axisV

of symmetry
= mass

semi-axes)

3, 4 or 5

The denominator is to be 3, 4 or 5, accordiog as the body is

rectangular, elliptical or ellipsoidal.

Thus, if we wanted the moment of inertia of a circle of radius

a about a diameter, we notice that the perpendicular semi-axis in

its plane is the radius a, and the semi-axis perpendicular to its

a*
plane is zero, the moment of inertia required is therefore M -j ,

if M be the mass. If we wanted the moment about a perpendi-

cular to its plane through the centre, we notice that the perpendi-

cular semi-axes are each equal to a and the moment required is

therefore

M a'' + a*

=^i-
9. As the process for determining these moments of inertia is very nearly the

same for all these cases, it will be sufficient to consider only two instances.

To determine the vxoment of inertia of an ellipse about the minor axis.

Let the equation to the ellipse be y=- ,Ja^ - x*. Take any elementary area PQ

parallel to the axis of y, then clearly the moment of inertia is

4/x f x^ydx=4:n- f x^Ja^-x^dx,
v a Jq

where /i is the mass of a unit of area.
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To integrate this, pat x=a Bm<t>, then the integral becomes

a* T'cos''^ BVQ?^d<p=a^ f 8
d^=

16
'

d a
.". the moment of inertia = uira6 -r =maS3 -r

.

4 4

To determine the moment of inertia of an ellipsoid about a principal diameter.

Let the equation to the ellipsoid he-2+p + -^=l. Take any elementary area

PNQ parallel to the plane of yz. Its area is evidently vPN. QN. Now FN is the

value of z when y =0, and QN the value of y when 2=0, as obtained from the equa-

tion to the ellipsoid; .-. PN=- V<^^^ QN=- JcF^%

.'. the area of the element=—, (a^-x^).
a^

Let fi be the mass of the unit of volume, then the whole moment of inertia

r" Tthc

62+ c2

=''fS/(«'-'>^<'--*"'^
4 , &2+ c2

=/*„ Traoc —

^

=mass
Ji' + cs

Ex. 1. The moment of inertia of an arc of a circle whose radius is a and which

subtends an angle 2a at the centre

(a) about an axis through its centre perpendicular to its plane= Ifa',

(b) about an axis through its middle point perpendicular to its plane

=2M{l-'^)a%

„ /, sin 20X0'
(c) about the diameter which bisects the arc = i» ( 1 g^ ) g"

'
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Ex. 2. The moment of inertia of the part of the area of a parabola cut off by

3
any ordinate at a distance x from the vertex is M ^x^ about the tangent at the

vertex, and M ^ about the principal diameter, where y is the ordinate corre-
o

Bponding to x.

Ex. 3. The moment of inertia of the area of the lemniscate r'=a' cos 2^ about
Q 1 g

a line through the origin in its plane and perpendicular to its axis is M o'.

Ex. 4. A lamina is bounded by four rectangular hyperbolas, two of them have

the axes of co-ordinates for asymptotes, and the other two have the axes for

principal diameters. Prove that the sum of the moments of inertia of the lamina

about the co-ordinate axes is

i(a'»-a'2)(i33-|3'==),

where aa', /3j8' are the semi-major axes of the hyperbolas.

Take the equations xy=u, v?-y^=v, then the two moments of inertia are

A = ifx^Jdudv and B= fjy^Jdudv, where j is the Jacobian of uv with regard

to ay. This gives at once A + B^^ ffdudv, where the limits are clearly «= „

to^, v=j32 to t;=/3'2.
A/

Ex. 5. A lamina is bounded on two sides by two similar ellipses, the ratio of

the axes in each being m, and on the other two sides by two similar hyperbolas, the

ratio of the axes in each being n. These four curves have their principal diameters

along the co-ordinate axes. Prove that the product of inertia about the co-ordinate

. (a2 - o'2) (S2 - S'2)
axes is

. ,
'^^

,,
'

, where aa', BS' are the semi-major axes of the curves.
4 {m^ -1- n^)

'^'^

Ex. 6. If da- be an element of the surface of a sphere referred to any rect-

angular axes meeting at the centre, prove that /x*"d(r=^—^r**+*, where r is the

radius of the sphere and n is integral.

Ex. 7. Taking the same axes as in the last example, prove that

J " 2n+ l L{n)

where n=f+g + h and L (/) stands for the quotient of the product of all the natural

numbers up to 2/ by the product of the same numbers up to/, i>oth included.

To prove this, we notice that by the last example we have

Expand both sides and equate the coefficients of \^/i^y^.

If we multiply the result by Ddr we have the value of the integral for any
homogeneous shell of density D and thickness dr. Regarding D as a function of r,

and integrating with regard to r, we can find the value of the integral for any
heterogeneous sphere in which the strata of equal density are concentric spheres.
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Ex. 8. If dff be an element of the surface of an ellipsoid referred to its principal

diameters, and if ^j be the perpendicular from the centre on the tangent plane, prove

where a,. 6, c are the semi-axes and the rest of the notation is the same as before.

This result follows at once from the corresponding one for a spherical shell by

the method ofprojections.

Ex. 9. Show that the surface S, the volume V, and the moment of inertia I

with regard to the plane perpendicular to the co-ordinate x^, of the sphere in space

of n dimensions, whose equation is cCi^-j-a^^-H ...+Xn'^=r^, are given by

ilML r r
"'«" i-v—

These results follow easily from Dirichlet's theorem. See also Art. 5 (2).

10. Method of Differentiation. Many moments of inertia

may be deduced from those given in Art. 8 by the method of differen-

tiation. Thus the moment of inertia of a solid ellipsoid of uniform

density p about the axis of a is known to be k Trabcp —^— • Let

the ellipsoid increase indefinitely little in size, then the moment
of inertia of the enclosed shell is

d\-^ irahcp—^— Y

.

This differentiation can be effected as soon as the law according

to which the ellipsoid alters is given. Suppose the bounding
ellipsoids to be similar, and let the ratio of the axes in each be

- = », -=q. Then

moment of inertia of solid ellipsoid = ^ 'rrppq
^

a^;

4
.•. moment of inertia of shell = ^ Trppq {p^ + j") a*^da.

In the same way
4

mass of solid ellipsoid = ^ '^'ppqo^^'i

.'. mass of shell = 47rppqa^da.

Hence the moment of inertia of an indefinitely thin ellipsoidal

h^ 4- c'
shell of mass M bounded by similar ellipsoids is M—^— .

By reference to Art. 8, it will be seen that this is the same as

the moment of inertia of the circumscribing right solid of equal
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mass. These two bodies therefore have equal moments of inertia

about their axes of symmetry at the centre of gravity.

T" 11. The moments of inertia of a heterogeneous body whose
boundary is a surface of uniform density may sometimes be found

by the method of differentiation. Suppose the moment of inertia

of a homogeneous body of density D, bounded by any surface of

uniform density, to be known. Let this when expressed in terms

of some parameter a be <^ (a) D. Then the moment of inertia of a

stratum of density D will be ^' (a) Dda. Replacing D by the

variable density p, the moment of inertia required will be

lp(f)'{a) da.

Ex. 1. Show that the moment of inertia of a heterogeneous ellipsoid about the

major axis, the strata of uniform density being similar concentric eUipsoids, and

the density along the major axis varying as the distance from the centre, is

Ex. 2. The moment of inertia of a heterogeneous ellipse about the minor axis,

the strata of uniform density being confocal ellipses and the density along the minor

3M 4a® + c' — 5a'c'
axis varying as the distance from the centre, is -^ -^-3

—

,_„ , .

Other methods offinding moments of ineHia.

12. The moments of inertia given in the table in Art. 8 are

only a few of those in continual use. The moments of inertia of an
ellipse, for example, about its principal axes are there given, but

we shall also frequently want its moments of inertia about other

axes. It is of course possible to find these in each' separate case

by integration. But this is a tedious process, and it may be often

avoided by the use of the two following propositions.

The moments of inertia of a body about certain axes through

its centre of gravity, which we may take as axes of reference, are

regarded as given in the table. In order to find the moment of

inertia of that body about any other axis we shall investigate,

(1) A method of comparing the required moment of inertia

with that about a parallel axis through the centre of gravity. This

is the theorem of parallel axes.

(2) A method of determining the moment of inertia about
this parallel axis in terms of the given moments of inertia about
the axes of reference. This is the theorem of the six constants of

a body.
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13. Theorem of Parallel Axes. Given the moments and
products of inertia about all axes through the centre of gravity of a
body, to deduce the moments and products about all other parallel

a^es.

The moment of inertia of a body or system of bodies about

any axis is equal to the moment of inertia about a parallel axis

through the centre of gravity plus the moment of inertia of the

whole mass collected at the centre of gravity about the original

axis.

The product of inertia about any two axes is equal to the
' product of inertia about two parallel axes through the centre of

gravity plus the product of inertia of the whole mass collected at

the centre of gravity about the original axes.

Firstly, take the axis about which the moment of inertia is

required as the axis of z. Let m be the mass of any particle of

the body, which generally will be any small element. Let x, y, z

be the co-ordinates of m, x, y, z those of the centre of gravity

Q of the whole system of bodies, a;', 3/, z those of m referred to

a system of parallel axes through the centre of gravity.

_,, . 2ma;' Sm/ ^mz ,, j- i. r ±x.^Then smce ^^^— , -^r^ , -:^;— are the co-ordmates 01 the
Zm 2,m Zm

centre of gravity of the system referred to the centre of gravity

as the origin, it follows that %mx'= 0, '2my'= 0, 'tmz'= 0.

The moment of inertia of the system about the axis of z is

= Xm{x^ + y^),

= tm[{x + xY+{y^-yy],
= %m{a?-Y f) + tm {x"" + y") + 2x . tmx + 2y . tmy\

Now 2m(x^ + 2/'') is the moment of inertia of a mass Xm
collected at the centre of gravity, and Sm (x'^ + y'^) is the moment
of inertia of the system about an axis through (?, also Xwmj' = 0,

"Xmy = 0; whence the proposition is proved.

Secondly, take the axes of x, y as the axes about which the

product of inertia is required. The product required is

= 2w xy = Xm (x + x) (y + y'),

= xy . 'Zm + Xmx'y' + x%my' + yimx
= xytm + Xmx'y.

Now Wy . tm is the product of inertia of a mass tm collected

at G and %nx'y' is the product of the whole system about axes

through G ; whence the proposition is proved.

Let there be two parallel axes A and B at distances a and b
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from the centre of gravity of the body. Then, if M be the mass
of the material system,

moment of inertia] rr 2 _ ftnoment of inertia ^,2
about A ) ( about B

Hence when the moment of inertia of a body about one axis

is known, that about any other parallel axis may be found. It is

obvious that a similar proposition holds with regard to the pro-

ducts of inertia.

14. The preceding proposition may be generalized as follows.

Let any system be in motion, and let x, y, z be the co-ordinates

at time t of anv particle of mass wi, then -n, -r7> -77 are the
" ^ at at at

d^x d'^u d^z
velocities, and -^ , -7^ , -^ the accelerations of the particle

resolved parallel to the axes. Suppose

ir_v rk( ^^ ^"^ ^y ^y ^^ ^•^^

to be a given function depending on the structure and motion of

the system, the summation extending throughout the system.

Also let <^ be an algebraic function of the first or second order.

Thus ^ may consist of such terms as

Ax' + Bx^^ + C{^^^+ Eyz + Fx^r

where A, B, C, &c. are some constants. Then the following

general principle will hold.

The value of V for any system of co-ordinates is equal to the

value of V obtained for a parallel system of co-ordinates with the

centre of gravity for origin plus the value of Yfor the whole mass
collected at the centre of gravity with reference to the first system

of co-ordinates.

For let X, y, z, be the co-ordinates of the centre of gravity,

and let a? = ^ + x, &c. .*. -7- = -r- + ^- , &c.
dt dt dt

Now since ^ is an algebraic function of the second order of
dx d^x

^'
ITf

' r/^ ' ^' ^^' ^^ ^^ evident that on making the above sub-

stitution and expanding, the process of squaring &c. will lead to

dx d^x
three sets of terms, those containing only x, -j-, -5-7, &c., those

containing the products of x, x' &c., and lastly those containing
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3

dx'
only x\

-J- , &c. The first of these will on the whole make up

^ (*' ;77 ' &c.
j , and the last ^ ix, -7- , &c. )

.

Hence we have

F=2m^(x,|...) + 2m^(^'.^' + ...)

where -4, B, C, &c. are some constants.

Now the term 2m i^-ji] is the same as xXm-j- , and this

vanishes. For since 1,mx' = 0, it follows that 2m -^ = 0. Simi-
an

larly all the other terms in the second line vanish.

Hence the value of V is reduced to two terms. But the first

of these is the value of V at the origin for the whole mass col-

lected at the centre of gravity, and the second of these the value

of V for the whole system referred to the centre of gravity as

origin. Hence the proposition is proved.

d^x d^v d?z
The proposition would obviously be true \i -^ , -^ , -j-^

,

or any higher differential coefficients were also present in the

function V.

15. Theorem of the six constants of a body. Given the

moments and products of inertia about three straight lines at right-

angles meeting in a point, to deduce the moments and products of
inertia about all other axes meeting in that point.

Take these three straight lines as the axes of co-ordinates.

Let A, By C be the moments of inertia about the axes of x, y, z;

D, E, F the products of inertia about the axes of yz, zx, xy. Let

a, /S, 7 be the direction-cosines of any straight line through the

origin, then the moment of inertia / of the body about that line

will be given by the equation

I=A(x^ + B^' +0^/- 2D^y - 2Ejol - 2Fal3.

Let P be any point of the body at which a mass m is situated,

and let x, y, z be the co-ordinates of P. Let ON be the line

whose direction-cosines are a, /8, 7, draw PiV perpendicular to ON.
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Since OiV" is the projection of OP, it is clearly

= £ca+y^ + zy,

also OF' = x'+y' + z\ and l = a' +^ + r/.

The moment of inertia I about 01^= 'tmPN*

= tm[(c' + y*-^z'-{oix + ^i/ + yzY}

==tm{(w'+y'-{-z'){a' + ^-]-y')-{ax+ fiy + yzy]

= tm(y' + z')a'' + 'Zm{z' + x')^-\-tm{x' + y*)y'

— 2Smyz . ySy - 2%mzx . ya — 2%mxy . a^

= ^a« + Bfi' + Crf - WPy - 2EyoL - 2Fa^.

It may be shown in exactly the same manner that if A'RC
be the moments of inertia with regard to the planes yz, zx, xy,

then the moment of inertia with regard to the plane whose direc-

tion-cosines are a, /9, 7 is

/' = A'a' + B'^+ aV + 22)y97 + 2^72 + 2Fa^.

It should be remarked that this formula differs from the
moment about a straight line in the signs of the three last

terms.

16. When three straight lines at right angles and meeting in

a given point are such that if they be taken as axes of co-ordi-

nates the products Xmxy^ ^myz, Xmzx all vanish, these are said

to be Principal Axes at the given point.

The three planes through any two principal axes are called

the Principal Planes at the given point.

The moments of inertia about the principal axes at any point
are called the Principal moments of Inertia at that point.

17. The fundamental formula in Art. 15 may be much sim-
plified if the axes of co-ordinates can be chosen so as to be
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principal axes at the origin. In this case the expression takes
the simple form

A method will presently be given by which we can always
find these axes, but in some simpler cases we may determine
their position by inspection. Let the body be symmetrical about
the plane of xy. Then for every element m on one side of the

plane whose co-ordinates are {x, y, z) there is another element of

equal mass on the other side whose co-ordinates are {x, y, —z).
Hence for such a body Xmxz = and 'Stmyz = 0. If the body be
a lamina in the plane of xy, then the z of every element is zero,

and we have again Xmwz = 0, Xmyz = 0.

Recurring to the table in Art. 8, we see that in every case the
axes, about which the moments of inertia are given, are principal

axes. Thus in the case of the ellipsoid, the three principal

sections are all planes of symmetry, and therefore, by what has

just been said, the principal diameters are principal axes of

inertia. In applying the fundamental formula of Art. 1-5 to any
body mentioned in the table, we may therefore always use the
modified form given in this article.

18. Let us now consider how the two important propositions of Arts. 13 and 15

are to be applied ta practice.

1/ Ex. 1. Suppose we want the moment of inertia of an elliptic area of mass M
and semiaxes a and 6 about a diameter making an angle 6 with the major axis. The

moments of inertia about the axes of a and 6 respectively are M -j and M-j

.

Then by Art. 17 the moment of inertia about the diameter is M-jCos^d +M— sin'^.

If r be the length of the diameter this is known from the equation to the ellipse to

M a?V^
be the same as -. »- , which is a very convenient form in practice.

4 T

y Ex. 2. Suppose we want the moment of inertia of the same ellipse about

a tangent. Let p be the perpendicular from the centre on the tangent, then by

Art. 13, the required moment is equal to the moment of inertia about a parallel

M a^b"^ 5M
axis through the centre together with Mp^=-j—^ +Mp^= 'T'P^f since 2W=a&.

Ex. 3. As an example of a different kind, let us find the moment of inertia of

an ellipsoid of mass M and semiaxes (a, 6, c) with regard to a diametral plane whose

direction-cosines referred to the principal planes are (a, /3, 7). By Art. 8, the moments

J2 _^ (.2 p2^ (j2 Q^ ^ ja

of inertia with regard to the principal axes are M—=— , -^—5— > ^—5— •

Hence by Art. 5, the moments of inertia with regard to the principal plunes are

M%-, if -= . M%. Hence the required moment of inertia is -= (a^a?+ b^^

+

cV).600 o

If p be the perpendicular on the parallel tangent plane, we know by solid geometry

that this is the same as M^ .

5
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[/' Ex. 4. The moment of inertia of a rectangle whose sides are 2a, 2& about a

diagonal is

2^^
3 a2+ &«*

U Ex. 5. If &i, &, be the radii of gyration of an elliptic lamina aboat two con-

jugate diameters, then
j^ +^ =4 (^ +

i)
.

\y Ex. 6. The sum of the moments of inertia of an elliptic area about any two

tangents at right angles is always the same.

Ex. 7. If ilf be the mass of a right cone, a its altitude and h the radius of the

10

3
base, then the moment of inertia about the axis is M^rr-h-; that about a straight

line through the vertex perpendicular to the axis is Jtf- ( 0^+ j J
, that about a slant

Bide M-ttt: —3—TT ; that about a T)erpendicular to the axis through the centre of
20 a^+ 6*

gravity is 3f^(a«+ 462).

'''

Ex. 8. If a be the altitude of a right cylinder, h the radius of the base, then

the moment of inertia about the axis is if -^ and that about a strai^t line through

the centre of gravity perpendicular to the axis is -7 ( ^ + b^
J

.

Ex. 9. The moment of inertia of a body of mass M about a straight line whose

equation is —^ = -—- = referred to any rectangular axes meeting at the
I m n

centre of gravity is

AP+Bm?+ Cn^ - 2Dmn - 2Enl - 2Flm+ M{f*+si^+h?-{fl+gm+ hn)^),

where {I, m, n) are the direction-cosines of the straight line.

Ex. 10. The moment of inertia of an elliptic disc whose equation is

ax^+ 2bxy+ qf^+2dx+2ey + l = 0,

abont a diameter parallel to the axis of «, is -r .

,

r^ , where M is the mass and
4 (ac — O'y

H is the determinant ^-1)"^ + 2hed - ae^ - ccP, usually called the discriminant.

Ex. 11. The moment of inertia of the elliptic disc whose equation in areal

co-ordinates is ^ (xyz)=0 about a diameter parallel to the side a is

„M\2 H fd dy
-^[-a] 2KAd^-Tz) ^'

where A is the area, S the discriminant and K the bordered discriminant.
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The Ellipsoids of Inertia.

19. The expression wliicli has been found in Art. 15 for the
moment of inertia / about a straight line whose direction-cosines

are {a, ^, y),

1= Ad? + 5/3' + Crf - 2Z)/37 - 2^a - 2^aA

admits of a very useful geometrical interpretation.

Let a radius vector Q move in any manner about the given

point 0, and be of such length that the moment of inertia about

OQ may be 'proportional to the inverse square of the length.

Then if U represent the length of the radius vector whose direc-

tion-cosmes are (a, y8, 7), we have 1 = -^, where e is some

constant introduced to keep the dimensions correct, and M is the

mass. Hence the polar equation to the locus of Q is

^ = Aa' + 5/3' + Crf - 25/37 - 2%a - 2^a/S.

Transforming to Cartesian co-ordinates, we have

Me^ = AX^ + BY^+CZ^-WYZ-^EZX-^FXY,
which is the equation to a quadric. Thus to every point of a

material body there is a corresponding quadric which possesses

the property that the moment of inertia about any radius vector

is represented by the inverse square of that radius vector. The
convenience of this construction is, that the relations which exist

between the moments of inertia about straight lines meeting at

any given point may be discovered by help of the known proper-

ties of a quadric.

Since a moment of inertia is essentially positive, being by
definition the sum of a number of squares, it is clear that every

radius vector R must be real. Hence the quadric is always an

ellipsoid. It is called the momental ellipsoid, and was first used

by Cauchy, Exercises de Math. Vol. ii.

So much has however been written on the ellipsoids of inertia

that it is difficult to determine what is really due to each of

the various authors. The reader will find much information on

these points in Prof. Cayley's report to the British Association on

the Special problems of Dynamics, 1862.

20. The Invariants. The momental ellipsoid is defined by

a geometrical property, viz. that any radius vector is equal to some

constant divided by the square root of the moment of inertia

about that radius vector. Hence whatever co-ordinate axes are

taken, we must always arrive at the same ellipsoid. If therefore

the momental ellipsoid be referred to any set of rectangular axes,

R. D.
'

2
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the coefficients of X", P, Z^, -2YZ,- 2ZX, - 2X7 in its equa-

tion will still represent the moments and products of inertia about

the axes of co-ordinates.

Since the discriminating cubic determines the lengths of the

axes of the ellipsoid, it also follows that its coefficients are un-

altered by a transformation of axes. But these coefficients are

A+B+C,
^AB+BG + GA-iy-E^-F*,

ABG-2DEF-A]y-BE*-GF'.

Hence for all rectangular axes having the same origin, these are

invariable and all greater than zero.

21. It should be noticed that the constant e is arbitrary,

though when once chosen it cannot be altered. Thus we have a
series of similar and similarly situated ellipsoids, any one of

which may be used as a momental ellipsoid.

When the body is a plane lamina, a section of the ellipsoid

corresponding to any point in the lamina by the plane of the
lamina, is called a momental ellipse of that point.

22. If principal axes at any point of a body be taken as

axes of co-ordinates, the equation to the momental ellipsoid takes
the simple form AX^ + BY^ + GZ^ = Me*, where M is the mass
and e* any constant. Let us now apply this to soirie simple cases.

,

Ex. 1. To find the momental ellipsoid at the centre of a material elliptio dis

Taking the same notation as before, we have A=M
-^

, £=M^, C=M—^
Hence the ellipsoid is

4 4 4

Since c is any constant, this may be -written

When Z=0, this becomes an ellipse similar to the boundary of given disc. Henc
we infer that the momental ellipse at the centre of an elliptic area is any simila

and similarly situated ellipse. This also follows from Art. 18, Ex. 1.

Ex. 2. To find the momental ellipsoid at any point of a material straight

;

AB of mass M and length 2a. Let the straight line OAB be the axis of z, tl

origin, G the middle point of AB, OG= c. If the material line can be regarde

as indefinitely thin, ^ = 0, B=m(^ + <A = C, hence the momental ellipsoid

T^+Z^=^, where c* is any constant. The momental ellipsoid is therefore i,

elongated spheroid, which becomes a right cylinder having the straight line fo

axis, when the rod becomes indefinitely thin.
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Ex. 3. The momental ellipsoid at the centre of a material ellipsoid is

where e is any constant. It should be noticed that the longest and shortest axes of

the momental ellipsoid coincide in direction -with the longest and shortest axes
respectively of the material ellipsoid.

23. Elementary Properties of Principal Axes. By a
consideration of some simple properties of ellipsoids, the following
propositions are evident

:

I. Of the moments of inertia of a body about axes meeting at
a given point, the moment of inertia about one of the principal
axes is greatest and about another least.

For, in the momental ellipsoid, the moment of inertia about
any radius vector from the centre is least when that radius vector
is greatest and vice versd. And it is evident that the greatest and
least radii vectores are two of the principal diameters.

It follows by Art. 5 that of the moments of inertia with
regard to all planes passing through a given point, that with
regard to one principal plane is greatest and with regard to

another is least.

II. If the three principal moments at any point be equal
to each other, the ellipsoid becomes a sphere. Every diameter is

then a principal diameter, and the radii vectores are all equal.

Hence every straight line through is a principal axis at 0, and
the moments of inertia about them are all equal.

For example, the perpendiculars from the centre of gravity of

a cube on the three faces are principal axes ; for, the body being

referred to them as axes, we clearly have %'mxy = 0, Xmyz = 0,j

Xmzx = 0. Also the three moments of inertia about them are byj

symmetry equal. Hence every axis through the centre of gravityi

of a cube is a principal axis, and the moments of inertia abou^

them are all equal. \

Next suppose the body to be a regular solid> Consider two
planes drawn through the centre of gravity each parallel to a face

of the solid. The relations of these two planes to the solid are

in all respects the same. Hence also the momental ellipsoid at

the centre of gravity must be similarly situated with regard to

each of these planes, and the same is true for planes parallel to all

the faces. Hence the ellipsoid must be a sphere and the moment
of inertia will be the same about every axis.

24. At every point of a material system there are always three

principal axes at right angles to each other.

Construct the momental ellipsoid at the given point. Then it

has been shown that the products of inertia about the axes are

2—2
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half the coefficients of —XY, —YZ, —ZX in the equation to the

momental ellipsoid referred to these straight lines as axes of co-

ordinates. Now if an ellipsoid be referred to its principal dia-

meters as axes, these coefficients vanish. Hence the principal

diameters of the ellipsoid are the principal axes of the system.

But every ellipsoid has at least three principal diameters, hence

every material system has at least three principal axes.

25. Ex. 1. The principal axes at the centre of gravity being the axes of refer-

ence, prove that the momental ellipsoid c the point (|>, q, r) is

- 2qrTZ - 2rpZX-2pqX r=e*,

when referred to its centre as origin.

Ex. 2. Show that the cubic equation to find the three principal moments of

inertia at any point {p, q, r) may be written in the form of a determinant

-___32_y2 pq

I-BM
rp

M -fii-jfi

rp

qr

qr
I-C
M p'-q'

If {I, m, n) be proportional to the direction-cosines of the axes corresponding to

any one of the values of /, their values may be found from the equations

{/- (A + Mq^+ Mj^)} I +Mpqm + Mrpn= 0,

Mpql+{I-(B + Mr^ + Mp^)}m + Mqm=0,
Mrpl+ Mqrm + { / - (C + Mp^ + Mq^)]n = 0.

St^

Ex. 3. If 5=0 be the equation to the momental ellipsoid at the centre of

gravity referred to any rectangular axes written in the form given in Art. 19,

then the momental ellipsoid at the point P whose co-ordinates are (p, q, r) is

S+ M{p'' + q^+ r^){X^+Y^+Z^)-M{pX + qY+rZ)^=0.

Hence show (1) that the conjugate planes of the straight line OP in the momental
ellipsoids at and P are parallel and (2) that the sections perpendicular to OP
have their axes parallel.

26. Ellipsoid of Gyration. The reciprocal surface of the
momental ellipsoid is another ellipsoid, which has also been em-
ployed to represent, geometrically, the positions of the principal
axes and the moment of inertia about any line.

of the ellipsoid ^ -h ^ -j- ^^= 1 is the ellipsoid oV-h 6V+<^=e*«

We shall require the following elementary proposition. The reciprocal surfiaoe

a;2 ifl 22

Let ON be the perpendicular from the origin on the tangent plane at any
point P of the first eUipsoid, and let I, m, n be. the direction-cosines of ON, then
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ON^=a^P+hhn^+ chi\ Produce ON to Q so that 0Q =^, then Q is a point on

the reciprocal surface. Let OQ = R; .-. ^=a^P+bhn?+ chi^. Changing this to

rectangular co-ordinates, we get e*=a^iii?+ h^^ + cPzK

To each point of a material body there corresponds a series

of similar momental ellipsoids. If we reciprocate these we get
another series of similar ellipsoids coaxial with the first, and
such that the moment of inertia of the body about the perpen^
diculars on the tangent planes to any one ellipsoid are propor-
tional to the squares of those perpendiculars. It is, however, con-

venient to call that particular ellipsoid the ellipsoid of gyration
which makes the moment of inertia about a perpendicular on a
tangent plane equal to the product of the mass into the square

of that perpendicular. IfM be the mass of the body and A, B, G
the principal moments, the equation to the elHpsoid of gyration is

A^ B'^ G M'

It is clear that the constant on the right-hand side must be

ji, for when Y and Z are put equal to zero, X^ must by

A
definition be in--M

27. Conversely, the series of momental ellipsoids at any point

of a body may be regarded as the reciprocals, with difierent

constants, of the ellipsoid of gyration at that point. They are

all of an opposite shape to the ellipsoid of gyration, having their

longest axes in the direction of the shortest axis and their shortest

axes in the direction of the longest axis of the ellipsoid of gy-
ration. The momental ellipsoids however resemble the general

shape of the body more nearly than the ellipsoid of gyration.

They are protuberant where the body is protuberant and com-
pressed where the body is compressed. The exact reverse of this

is the case in the ellipsoid of gyration. See Art. 22, Ex. 3.

28. Ex. 1. To find the ellipsoid of gyration at the centre of a material elliptic

disc. Taking the values ol A, B, C given in Art. 22, Ex. 1, we see that the

X^ ya z^ I
ellipsoid of gyration is -^ + -^ + ^^^ = j

.

Ex. 2. The ellipsoid of gyration at any point of a material rod AB is

^ ya ^2
-FT + r-^—s + T-5—i= l, taking the same notation as in Art. 22, Ex. 2. This is

la- + c^ la' + c'

a very flat ellipsoid which when the rod is indefinitely thin becomes a circular area

whose centre is at 0, whose radius is J^a^+ c^ and whose plane is perpendicular

to the rod. '
-.
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Ex. 3. It may be shown that the general equation to the ellipsoid of gyration

referred to any Bet of rectangular axes meeting at the given point of the body is

=0,A -F -E MX
-F B -D MY
-E -D C MZ
MX MY MZ M

or when expanded

{BC-LP)X'i-^(CA-E:^)Y'*+{AB-F^Z^+'i{AD^EF)YZ
+ 2(BE+FD) ZX+2(CF+J)E) XY

=^ {ABO-AI/^ - BE* - CF* - 2DEF).

The right-hand side, when multiplied by M, is the discriminant obtained by

leaving out the last row and the last column, and the coefficients of X\ T*, Z*,

2ZX, 2XY, 2YZ are the minors of this discriminant.

29. The use of the ellipsoid whose equation referred to the

principal axes at the centre of gravity is

X» F« Z^ 5

Swiaj* 2my Xmz* if'

has been suggested by Legendre in his FoncHons Elliptiques.

This ellipsoid is to be regarded as a homogeneous solid of such

density that its mass is equal to that of the body. By Art. 8,

Ex. 3, it possesses the property that its moments of inertia

with regard to its principal axes, and therefore by Art. 15 its

moments of inertia with regard to all planes and axes, are the

same as those of the body. We may call this ellipsoid the equi-

rrw77\ental ellipsoid or Legendre's ellipsoid.

Ex. If a plane move so that the moment of inertia with regard to it is always

pro^rtional to the square of the perpendicular from the centre of gravity on the

plane, then this plane envelopes an ellipsoid similar to Legendre's ellipsoid.

30. There is atfother ellipsoid which is sometimes used. By Art. 15 the moment
of inertia with reference to a plane whose direction-cosines are (a, /3, 7) is

r=2toa;2 . a2+ 2mj/a.j3|+2nw? . V ^- 2Smy«
.
/Sy + 2Snwx

.
70 + 22ma:y . o/3.

Hence, as in Art. 19, we may construct the ellipsoid

2nu;2.Z2-f-2mj/2. y2+^2^2 + 22mj/«. rZ-f22»wx.ZZ+ 22»ucy.XF=Af««.

Then the moment of inei^ with regard to any plane through the centre of the

ellipsoid is represented by the inverse square of the radius vector perpendicular to

that plane.

If we compare the equation of the momental ellipsoid with that of this ellipsoid,

we see that one may be obtained from the other by subtracting the same quantity

from each of the coefficients of X', Y^, Z^, Hence the two ellipsoids have their

circular sections coincident in direction.

This ellipsoid may also be used to find the moments of inertia about any

straight line through the origin. For we may deduce from Art. 5 that the moment
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of inertia about any radius vector is represented by the difference between the

inverse square of that radius vector and the sum of the inverse squares of the

semi-axes. This ellipsoid is a reciprocal of Legendre's ellipsoid. All these ellipsoids

have their principal diameters coincident in direction, and any one of them may^be

used to determine the directions of the principal axes at any point.

31. When the body considered is a lamina, the section of the ellipsoid of

gyration at any point of the lamina by the plane of the lamina is called the ellipse

of gyration. If the plane of the lamina be the plane of xy, we have Smj?=0.

The section of the fourth ellipsoid is then clearly the same as an ellipse of gyration

at the point. If any momenta! ellipse be turned round its centre through a right

angle it evidently becomes similar and similarly situated to the ellipse of gyration.

So that, in the case of a lamina, any one of these ellipses may be easily changed

into the others. -.

32. Equimomental Cone. A straight line passes through a

fixed point and moves about it in swc/t a manner that the moment

of inertia about the line is ahuays the same and equal to a given

quantity I. To find the equation to the cone generated by the

straight line.

Let the principal axes at be taken as the axes of co-ordi-

nates, and let (a, /8, 7) be the direction-cosines of the straight line

in any position. Then by Art. 17 we have Ad^ + B^^ + G^f = /.

Hence the equation to the locus is

or, transforming to Cartesian co-ordinates,

{A-^x' + iB-^f+iG-^z^^O.
It appears from this equation that the principal diameters of

the cone are the principal axes of the body at the given point.

The given quantity / must be less than the greatest and

greater than the least of the moments A,B, G. Let A, B, G hQ

arranged in descending order of magnitude; then if I be less

than B, the cone has its concavity turned towards the axis (7, if /
be greater than B the concavity is turned towards the axis A, if

7=5 the cone becomes two planes which are coincident with the

central circular sections of the momental ellipsoid at the point 0.

The geometrical peculiarity of this cone is that its circular

sections in all cases are coincident in direction with the circular

sections of the momental ellipsoid at the vertex.

This cone is called an equimomental cone at the point at which

its vertex is situated.

33. Products of Inertia. The properties of products of inertia of a body

about different sets of axes are not so useful as to require a complete discussion.

The following theorems will serve as exercises.
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Ex. 1. If any point be given and any plane drawn through it, then two

straight lines at right angles Ox, Oy can always be found such that the product of

inertia about these lines is zero.

These are the axes of the section of the momental ellipsoid at the point

formed by the given plane.

Ex. 2. If two other straight lines at right angles Oaf, 0]f be taken in the same

plane making an angle Q measured in the positive direction with Ox, Oy respectively,

then the product of inertia F' about Ox^, Oy' is given by the equation

F'=^8in2d{A-B),

where A, B are the moments of inertia about Ox, Oy.

Ex. 3. If 7 be the moment of inertia about any line in this plane making an

angle d with Ox, then
i=A co&^e-^BwcL^e.

For the section of the momental eUipsoid by the plane is the ellipse whose

equation is Ax^-rBy^=M^, whence the property follows at once.

Ex. 4. Let (Vw) {\'ft.'v') be the direction-cosines of two straight lines Ox^, Oy*

at right angles passing through the origin and referred to the principal axes at O
as axes of co-ordinates. Then the product of the inertia about these lines is

F'= Xk'Zmx^+ fifi'Iimy^ + vv'I,mz^.

For let (x'l/'/) be the co-ordinates of any point {xyz) referred to 0£, Oy* and a
third line 0^ as new axes of co-ordinates. Then

af=\s+iaf+n, and y'=\'x+fi'y+ji'z.

Hence, since F'='Lmx'y', the theorem follows by simple multiplication.

Since XX'-f /*/*'*}- »'y'=0, we have

-r=A\S.'+Bfifi'+Cvv'.

Ex. 5. If {'Kfw) be the direction-cosines of an axis Ox', then the direction-

cosines {X'tip) of another axis Oy' at right angles such that the product of inertia

about Ox', Oy' is zero, are given by the equations

V _ m' •

{B-C),jj>~{G-A)v\~(A-B)\fi'

For by (4) the equations to find XVV are

AXK'+Bftfi.'+Cptif=0,)

\\'+fjiti + vi>'=0,\

whence the theorem follows by cross multiplication.

By (1) this is equivalent to the geometrical theorem. Given a radius vector

Ox' of an ellipsoid, find another radius vector Oy' such that Ox*, Oy' are principal

diameters of the section x'Oy'.

Ex. 6. Let {Imn) be the direction-cosines of any given straight line Oz', and let

D', E' be the products of inertia about 0/, Oy'; Oz^, Oaf, where Ox', Oy' are any
two straight lines at right angles. Then as Ox', Oy' turn roimd Osf, D'^+ B'^ is

Qonstant, and

D'2+E'^=(A-B)Hlm)^ + (B-Cf)Hmn)^ + iC-A)'^{nl)*.
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For by (4), -D'=Al\+ BmfjL+ Cnv, -E'=Al}i+ Bmi^+ Cnv'\

But X''+ X'2=l-?2=m2+n2,)
X/i4+XV= -Im, y

whence by substitution the theorem follows at once.

Ex. 7. If A', B' be the moments of inertia about Ox\ Oy', then as Ox', Oy'

turn round Oz', the value of A'B' - F'^ is constant, and

A'B' - F'2=BCP+ CAw?+ ABn^.

On Equimomental Bodies.

34. Two bodies or systems of bodies are said to be equi-

momental when their moments of inertia about all straight lines

are equal each to each.

35. If two systems have the same centre of gravity, the same
mass, the same principal axes and principal moments at the centre

of gravity, it follows from the two fundamental propositions of

Arts. 13 and 15 that their moments of inertia about all straight

lines are equal, each to each.

That the converse theorem is also true may be shown thus.

We know by Art. 13 that of all straight lines having a given

direction in a body, that straight line has the least moment of

inertia which passes through the centre of gravity. It is clear that

these least moments of inertia could not be equal in two bodies

for all directions unless they had a common centre of gravit)^

Of all straight lines through the centre of gravity those which
have the greatest and least moments of inertia are two of the

principal axes, hence these and therefore also the third principal

axis must be coincident in direction if the two bodies are equi-

momental. The principal moments of inertia must then be equal,

because all moments are equal. Lastly, by Art. 13, the two
systems could not have equal moments about two parallel axes,

each to each, unless their masses were equal.

It is easy to see that two equimomental systems must have
the same momental ellipsoid, and therefore the same principal

axes at every point.

36. Case of a Triangle. To find the moments and products

of inertia of a triangle about any axes whatever.

If /3 and 7 be the distances of the angular points B, G, of a
triangle ABG from any straight line AX through the angle A, in

the plane of the triangle, it is known that the moment of inertia
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M
of the triangle about AX is-^ {^ + ^y + 7*), where M is the mass

of the triangle.

M
Let three equal particles, the mass of each being -^ , be placed

at the middle points of the three sides. Then it is easily seen,

that the moment of inertia of the three particles about AX is

^rnHM))'
which is the same as that of the triangle. The three particles

treated as one system, and the triangle, have the same centre of

gravity. Let this point be called 0. Draw any straight line OX'
through the common centre of gravity parallel to AX, then it

is evident that the moments of inertia of the two systems about

OX' are also equal.

Since this equality exists for all straight lines through in

the plane of the triangle, it will be true for two straight lines OX',
OY' at right angles, and therefore also for a straight line OZ'
perpendicular to the plane of the triangle.

One of the principal axes at of the triangle, and of the

system of three particles, is normal to the plane, and therefore the

same for the two systems. The principal axes at in the plane,

are those two straight lines about which the moments of inertia

are greatest and least, and therefore by what precedes these axes

are the same for the two systems. If at any point two systems
have the same principal axes and principal moments, they have
also the same moments of inertia about all axes through that

point, and the same products of inertia about any two straight

lines meeting in that point. And if this point be the centre of

gravity of both systems, the same thing will also be true for any
other point.

If then a particle whose mass is one-third that of the triangle

be placed at the middle point of each side, the moment of inertia

of the triangle about any straight line, is the same as that of the

system of particles, and the product of inertia about any two
straight lines meeting one another, is the same as that of the

system ofparticles about the same straight lines.

37. Three points D, E, F can always be found such that the
products and moments of inertia of three equal particles placed
at D, E, F, may be the same as the products and moments of
inertia of any plane area. For let be the centre of gravity of

the area. Ox, Oy the principal axes at in the plane of the area,

and Ma^ and M^'^ be the moments of inertia about these axes.
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Let {xy), {x'y'), {x"y") be the co-ordinates of D, E, F, m the
mass of a particle, so that M= 3?w.

Then we must have m{a? + x^ + «'") = ilf/S',

xy + x'y + a;"^" = 0.

Also, since the two systems must have the same centre of

gravity, x + x' +x" = 0, y +y' +y = 0.

Eliminating x'y, x"y" from these equations, we get

which is the equation to a momental ellipse. It also follows, that

D may be taken any where on this ellipse, and E and F are at

the opposite extremities of that chord which is bisected in some
point N by the produced radius DO, so that ON= | OD.

38. A momental ellipsoid at the centre of gravity of any tri-

angle may hefound as follows.

Let an ellipse be inscribed in the triangle touching two of the

sides AB, BG in their middle points F, D. Then, by Camot'a
Theorem, it touches the third side CA in its middle point E.

Since BF is parallel to GA the tangent at E, the straight line

joining E to the middle point N of BF passes through the centra

and therefore the centre of the conic is the centre of gravity of

the triangle.

This conic may be shown to be a momental ellipse of the

triangle at 0. To prove this, let us find the moment of inertia of

the triangle about OE. Let 0E= r, and let the semi-conjugate

diameter be r, and co the angle between r and r. Now ON = ^r,

and hence from the equation to the eUipse FN^ = \r'^,

therefore moment of) o i# « « . 2 ^ ^'^erefore moment of) o 1* « /a • 2

mertia about OF] ^ *

where A' is the area of the ellipse, so that the moments of inertia

of the system about OE, OF, OB are proportional inversely to

0E\ 0F\ 0B\ If we take a momental ellipse of the right

dimensions, it will cut the inscribed conic in E, F, and B, and

therefore also at the opposite ends of these diameters. But two

conies cannot cut each other in six points unless they are identical.

Hence this conic is a momental ellipse at of the triangle,

A normal at to the plane of the triangle is a principal axis

of the triangle (Art. 17). Hence a momental ellipsoid of the

triangle has the inscribed conic for one principal section. If a

and h be the lengths of the axes of this conic, c that of the axis
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of the ellipsoid which is perpendicular to the plane of the lamina,

we have by Arts. 7 and 19

11 1

If the triangle be an equilateral triangle, the momental ellip-

soid becomes a spheroid, and every axis through the centre of

gravity in the plane of the triangle is a principal axis.

Since any similar and similarly situated ellipse is also a

momental ellipse, we might take the ellipse circumscribing the

triangle, and having its centre at the centre of gravity, as the

momental ellipse of the triangle.

39. Ex. 1. A momental ellipse at an angiilar point of a triangular area toticlies

the opposite side at its middle point and bisects the adjacent sides.

Ex. 2. The principal radii of gyration at the centre of gravity of a triangle

are the roots of the equation

"^
36 "" ^108""'

where A is the area of the triangle.

Ex. 3. The direction of the principal axes at the centre of gravity of a tri-

angle may be constructed thus. Draw at the middle point D of any side BO

lengths DH=— , DH'=— along the perpendicular, where p is the perpendicular

from A on BC and P, k'^ are the principal radii of gyration found by the last ex-

ample. Then OH, OH' are the directions of the principal axes at 0, whose

moments of inertia are respectively Mk^ and Mk'^.

Ex. 4. The directions of the principal axes and the principal moments at the

centre of gravity may also be constructed thus. Draw at the middle point D of

BC
any side BC a perpendicular DK=—p. Describe a circle on OK as diameter

and join D to the middle point of OK cutting the circle in R and S, then OR, OS
are the directions of the principal axes, and the moments of inertia about them are

DS^ DR^
respectively M—^ , and M —5- .

Ex. 5. Let four particles each one-sixth of the mass of the area of a parallelo<

gram be placed at the middle points of the sides and a fifth particle one-third of the

same mass be placed at the centre of gravity, then these five particles and the area

of the parallelogram are equimomental systems.

Ex. 6. Let four particles each one-twelfth of the mass of the area of a quadri-

lateral be placed at each corner and let a negative mass also one-twelfth be placed

at the intersection of the diagonals and a sixth particle three-quarters of the same

mass be placed at the centre of gravity, then these six particles and the area of the

quadrilateral are equimomental systems.

Ex. 7. Let three particles each one-sixth of the mass of an elliptic area be placed

one at one extremity of the major axis and the other two at the extremities of the
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ordinate which bisects the semi-axis major, and let a fourth particle whose mass is

one-half that of the area be placed at the centre of gravity. Then the moments
and products of inertia of the system of four particles and of the elliptic area are

the same for all axes whatever.

Ex. 8. Any sphere of radius a and mass M is equimomental to a system of

four particles each of mass kk \) placed so that their distances from the centre

make equal angles with each other and are each equal to r and a fifth particle equal

to the remainder of the mass of the sphere placed at the centre.

40. Case of a Tetrahedron. To find the moments and pro-
ducts of inertia of a tetrahedron about any axes whatever.

Let ABGD be the tetrahedron. Through one angular point

D draw any plane and let it be taken as the plane of xy. Let D
be the area of the base ABC; a, /S, 7 the distances of its angular

points from the plane of xy, and p the length of the perpendicular

from D on the base ABC.

Let PQB be any section parallel to the base ABC and of

thickness du, where u is the perpendicular from D on PQR. The
moment of inertia of the triangle PQR with respect to the plane
of xy is the same as that of three equal particles, each one-third

its mass, placed at the middle points of its sides. The volume of

u^
the element PQR = -^ Ddio. The ordinates of the middle points

of the sides AB, BG, GA are respectively —^, ,
.

Hence, by similar triangles, the ordinates of the middle points of

pa, <?iJ.iJP are also;-±^|, ^^^, 31±^^.

The moment of inertia of the triangle PQR with regard to the

r)lane xy is therefore

Integrating from w = to w = p, we have the moment of

inertia of the tetrahedron with regard to the plane xy

= ^{^' + /3' + 7' + /37 + 7a + aySl,

where V is the volume.

If particles each one-twentieth of the mass of the tetrahedron

were placed at each of the angular points and the rest of the

mass, viz. four-fifths, were collected at the centre of gravity, the
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moment of inertia of these five particles with regard to the plane

of xy would be

which is the same as that of the tetrahedron.

The centre of gravity of these five particles is the centre of

gravity of the tetrahedron, and they together make up the mass
of the tetrahedron. Hence, by Art, 13, the moments of inertia of

the two systems with regard to any plane through the centre of

gravity are the same, and by the same article this equality wiU
exist for all planes whatever. It follows by Art. 5, that the mo-
ments of inertia about any straight Hne are also equal. The two
systems are therefore equimomental*.

41. Theory of Projections. If the distance of every point

in a given figure in space from some fixed plane be increased in a

fixed ratio, the figure thus altered is called the projection of the

given figure. By projecting a figure firom three planes as base

planes at right angles in succession, the figure may be often much
simplified. Thus an ellipsoid can always be projected into a
sphere, and any tetrahedron into a regular tetrahedron.

It is clear that if the base plane from which the figure is

projected be moved parallel to itself into a position distant D
from its former position, no change of form is produced in the
projected figure. If n be the fixed ratio of projection the pro-

jected figure has merely been moved through a space nD perpen-

dicular to the base plane. We may therefore suppose the base

plane to pass through any given point which may be convenient.

42. If two bodies are equimomental, their projections are also

equimomental.

Let the origin be the common centre of gravity, then the

two bodies are such that Swi = Xm ; 2wa; = 0, Xm'x = 0, &c.,

Xmx' = ^m'x'^, 1,myz = Xm'y'z, &c., unaccented letters referring

to one body and accented letters to the other. Let both the

bodies be projected from the plane of xy in the fixed ratio 1 : tl

Then any point whose co-ordinates are {x, y, z) is transferred to

(aj, y, nz) and {x\ y, z') to (x\y', nz). Also the elements of mass
m, m become nm and niii. It is evident that the above equalities

are not affected by these changes, and that therefore the projected

bodies are equimomental.

The prelection of a momsntal ellipse of a plane area is a
momental ellipse of the projection.

* This result was proposed as a problem in the Mathematical Tripos in an
interval of the publication of the preceding and following results, thus anticipating

the author by a short time.
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Let the figure be projected from the axis of a; as base line,

so that any point {cc, y) is transferred to {x, y) where y = ny,

and any element of area m becomes m' where m' = nm. Then

1,ma? = - %m'a?, %mxy = -^ Xm'xy, %my^ = -^ Xm'y'^.
7h j^ 7t

The momental ellipses of the primitive and the projection are

tmy^X^ - ltmxyXT+ Xma? Y^ = Me*,

tmyX" - 22m'xy'X' 7' + tm'a?7"= M'e'\

To project the former we put X' = X, 7' = n7. Its equation
becomes identical with the latter by virtue of the above equalities

when we put e'* = eV.

43. Ex. 1. A momental ellipse of the area of a square at its centre of gravity

is easily seen to be the inscribed circle. By projecting these first with one side as

base liae, and secondly with a diagonal as base, the square becomes successively a

rectangle and then a parallelogram. Hence a momental eUipse at the centre of

"gravity of a parallelogram is the inscribed conic touching at the middle points of

the sides.

Ex. 2. By projecting an equilateral triangle into any triangle, we may infer the

results of some of the previous articles, but the method will be best explained by its

application to a tetrahedron.

Ex. 3. Since any ellipsoid may be obtained by projecting a sphere, we infer by

Art. 39, Ex. 8, that any sohd ellipsoid of mass M is equimomental to a system of

3M 1
four particles each of mass -^ -^ placed on a similar ellipsoid whose linear dimen-

sions are n times as great as those of the material ellipsoid, so that the eccentric

lines of the particles make equal angles with each other, and a fifth particle equal to

the remainder of the mass of the ellipsoid placed at the centre of gravity.

K this material ellipsoid be the Legendre's ellipsoid of any given body, we

see that any body whatever is equimomental to a system of five particles placed as

above described on an ellipsoid similar to the Legendre's ellipsoid of the body.

Ex. 4. Show that a solid oblique cone on an eUiptio base of mass M is eqnimo-

fnental to a system of three particles each -^ M placed on the circumference of the

3
base so that the differences of their eccentric angles are equal, a fourth particle r^ M
placed at the middle point of the straight line joining the vertex to the centre of

gravity of the base, and a fifth particle to make up the mass of the cone placed at

the centre of gravity of the volume.

44. To find the equimomental ellipsoid of any tetrahedron.

The moments of inertia of a regular tetrahedron with regard

to all planes through the centre of gravity are equal by Art. 23.

If r be the radius of the inscribed sphere, the moment with
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regard to a plane parallel to one face is easily seen by Art. 40

to he M -^ . If then we describe a sphere of radius p = V3r,
5

with its centre at the centre of gravity, and its mass equal to

that of the tetrahedron ; this sphere and the tetrahedron will be

equimomental. Since the centre of gravity of any face projects

into the centre of gravity of the projected face, we infer that

the elHpsoid to which any tetrahedron is equimomental, is similar

and similarly situated to that inscribed in the tetrahedron and

touching each face in its centre of gravity, but has its linear

dimensions greater in the ratio 1 : ^3. It may also be easily

seen that the sphere whose radius is p = J^r, touches each edge

of the regular tetrahedron at its middle point. Hence we infer

that the equimomental ellipsoid of any tetrahedron touches each

edge at its middle point and has its centre at the centre of gravity

of the volume.

These results may also be deduced from Art. 25, Ex. 2, with-

out the use of projections.

45. Ex. 1. If E^ be the sum of the squares of the edges of a tetrahedron, F*

the sum of the squares of the areas of the faces and V the volume, show that the

semi-axes of the ellipsoid inscribed in the tetrahedron, touching each face in the

centre of gravity and having its centre at the centre of gravity of the tetrahedron,

are the roots of
£2 p'i 72

^'-2^3''* + 25-3-2'^- 2673=^'

and if the roots be i: p-^± p^:i: p^, then the moments of inertia with regard to the
Q 2 Q 2 Q 2

principal 2)tenes of the tetrahedron are M-^ , M-^ , M -^

.

Ex. 2. If a perpendicular EP be drawn at the centre of gravity E of any

face = -^
, where p is the perpendicular from the opposite comer of the tetra-

hedron on that face, then P is a point on the principal plane corresponding to th'e

root p of the cubic.

46. Theory of Inversion. To explain how the theory of in-

version can he applied to find moments of inertia.

Let a radius vector drawn from some fixed origin to any point P of a figure

be produced to P' where the rectangle OP . OP'=k^ where k is some given quantityi

Then as P travels all over the given figure, P traces out another which is calle

the inverse of the given figure.

Let (a;, y, z) be the co-ordinates of P, («', y', z') those of P'; r, / the radii vector©

dv, dv' corresponding polar elements of volume
; p, p, dm, dm' their respecti^

densities and masses. Let dw be the solid angle subtended at by either d

or dv'. Then

dv'='t^dud/r'={-\ »^dwdr=f-J dv.
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and since -> = - we have x'2dD'=f-j x^dv. "Sovr dm=pdv, dm'=p'dv'. If then

we take i- = f -
j we have 2x'^dm'=Xx^dm, with similar equalities in the case of

all the other moments and prodncts of inertia.

When the body is an area or an arc the ratio of dv' to dv is different. We have

in these cases respectively j-=(-) ''^("l' Similar results however follow

which may be all simimed np in the following theorem.

Theok. I. Let any body be changed into another by inversion with regard to

any point 0. If the densities at corresponding points be denoted by p, p and their

distances from by r, r'; let p'=p(-\ . Then these two bodies have the same

moments of inertia with regard to all straight lines through 0. Here n = 10, 8 or 6

according as the body is a volume, an area or an arc.

It also follows that the two bodies have the same principal axes at the point 0,

and the same ellipsoids of gyration.

We may also obtain the following theorem by the use of Sir W. Thomson's

method of finding the potentials of attracting bodies by Inversion.

Theob. II. Let any body be changed into another body by inversion with regard

to any point 0. If the densities at corresponding points P, P' be denoted by p, />',

and their distances from by r, r', let p'=p ( -; ) • Then the moment of inertia of

the second body with regard to any point C is equal to that of the first body with

regard to the corresponding point C multiplied by either of the eqvul quantities

/ K \2 OC
\ or ) ^

Tic ' ^^^® n=8, 6 or 4 according as the body is a volume, area or arc.

To prove this, consider the case in which the body is a volume. By similar

triangles CP.r'=CP'. OC. Hence proceeding as before, we find

pdv(CPf{^^'j=p'dv'(C'P)\

This being true for every element the theorem follows at once.

Ex. The density of a solid sphere varies inversely as the tenth power of the

distance from an external point 0. Prove that its moment of inertia about any

straight line through is the same as if the sphere were homogeneous and equal

in density to that of the heterogeneous sphere at a point where the tangent from

meets the sphere. Prove that if the density had varied inversely as the sixth power

of the distance from 0, the masses of the two spheres would have been equal. What
is the condition they should have a common centre of gravity? Math. Tripos.

47. Centre of Pressure. The theory of equimomental par-

ticles is of considerable use in finding the centre of pressure of

any area vertically immersed in a homogeneous fluid under the

action of gravity. It may be proved from hydrostatical principles

that if the axis of x be in the effective surface, and the axis of y

RD. 3
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vertically downwards, the co-ordinates of the centre of pressure

Product of inertia about the axes

moment of area about Ox

Moment of inertia about Ox
moment of area about Ox

We see therefore that two equimomental areas have the same'

centre of pressure.

Let the given area be equimomental to particles whose masses

are m^, m^ &c. and let [x^, y^, (x^, y^, &c. be the co-ordinates of

these particles. Then

Xmy ' '^my
'

But these are the formulae to find the centre of gravity of particles

whose masses are proportional to wij^^, m^^ &c. having the same
co-ordinates as before. Hence this rule,

If any area he equimomental to a series of particles, the centre

of pressure of the area is the centre of gravity of the same particles

with their masses increased in the ratio of their depths.

For example the centre of pressure of a triangle wholly immersed is the centre

of gravity of three weights placed at the middle points of the sides and each pro-

portional to the depth of the point at which it is placed.

Ex, 1, If j), q, r he the depths of the comers of a triangular area wholly

immersed in a fluid, prove that the area! co-ordinates of its centre of pressure

referred to the sides of the triangle itself arej(l+], jf^+jt i(^+~)'

where «=p + j+r.

This may be proved by replacing the triangle by three weights situated at the

middle points of the sides proportional to their depths, and taking moments about

the sides in succession to find their centre of gravity.

Ex. 2. Let any vertical area be referred to Cartesian rectangular axes Ox, Oy,

with the origin at the centre of gravity. Let the depth of the centre of gravity

be A, and let the intersection of the area with the surface of the fluid make an

angle with the axis of x, and let this intersection in the standard case cut the

positive side of the axis of y. Let A, B and F be the moments and product of

inertia of the area about the axes. Then by taking moments about Ox, Oy we se

that the co-ordinates of the centre of pressure are

y_B sm$-FeoB0 ^_F sinO-A coaO

ha ' ^~ hii
•

where a is the area.

Ex. 3. If the area turn round its centre of gravity in its own plane the 1

of its centre of pressure in the area is an ellipse and in space is a circle. The
ellipse has its principal diameters coincident in direction with the principal axcf

of the area at the centre of gravity. The circle has its centre in the vertical throiK

the centre of gravity.

II
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On the positions of the Principal Axes of a system.

48. Prop. A straight line being given it is required to find at

what point in its length it is a principal axis of the system, and if
', any such point eodst to find the other two 'principal axes at that

j
point

Take the straight line as axis of z, and any point in it as

origin. Let G be the point at which it is a principal axis, and let

Cx\ Cy be the other two principal axes. ^g.

Let CO = h, 6 = angle between Cx and Ox. Then _ fi*^

x'= a; cos ^ + 2/ sin ^1 ,iy^
y' = — xsmd + ycos6>. ^'^

z =z — h
j

Hence ^mxz — cos O'^mxz + sin Ol^myz] _ . .^ >

— h {cos OXmx + sin 6Xmy)) ''

"^my'z = — sin B'Zmxz + cos Ol.myz] _ ^ .^^

— h {— sin 6Xmx + cos 6'Zmy))
^

tmxy=tm(y'-x'f'^^ + tmxy cos 20 = (3).

The last equation shows that

tan2^ =,.^^ (4)
Xm{x'-y')

2F
B-A'

according to the previous notation.

The equations (1) and (2) must be satisfied by the same value

of h. Eliminating h we get Smxz %ny = %myz Xmx as the con-

dition that the axis of z should be a principal axis at some point

in its length. Substituting in (1) we have

h=^^- = -^ W-
2,my 2,mx

The equation (.5) expresses the condition that the axis of z

should be a principal axis at some point in its length ; and

the value of h gives the position of this point. The positions

of the other two principal axes may then be found by equa-

tion (4).

|l If tmxz = and tmyz = 0, the equations (1) and (2) are

'both satisfied by A = 0. These are therefore the sufficient and

3—2
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necessary conditions that the axis of z should be a principal axis

at the origin.

If the system be a plane lamina and the axis of 2 be a normal

to the plane at any point, we have 2 = 0. Hence the conditions

'%mxz = and Xmyz = are satisfied. Therefore one of the

principal axes at any point of a lamina is a normal to the plane

at that point.

In the case of a surface of revolution bounded by planes per-

pendicular to the axis, the axis is a principal axis at any point of

its length.

Again equation (4) enables us, when one principal axis is

given, to find the other two. If ^ = a be the first value of 6, all

the others are included in 6 = a-\-n-^; hence all these values give
it

only the same axes over again.

49. Since (4) does not contain It, it appears that if the axis of

2: be a principal axis at more than one point, the principal axes at

those points are parallel. Again, in that case (5) must be satis-

fied by more than one value of A. But since h enters only in the

first power, this cannot be unless

%mx — 0, 2my = 0,

l^mxz = 0, %myz = 0;

so that the axis must pass through the centre of gravity and be
principal axis at the origin, and therefore (since the origin is arbi-

trary) a principal axis at every point in its length.

If the principal axes at the centre of gravity be taken as the

axes of X, y, z, (1) and (2) are .satisfied for all values of h. Hence,
if a straight line be a principal axis at the centre of gravity, it ia

a principal axis at every point in its length.

50. Let the system be projected on a plane perpendicular tc

the given straight line, so that the ratios of the elements of mass
to each other are unaltered. The given straight line, which ha;

been taken as the axis of z, cuts this plane in 0, and will be c

principal axis of the projection at 0, because the projected systen
being a plane lamina, the conditions ^mxz = 0, z.myz = an
both satisfied. Since z does not appear in equation (4), it follow;

that if the given straight line be a principal axis at some point (

in its length, the other two principal axes at C will be parallel t<

the principal axes of the projected system at 0. These last ma;
often be conveniently found by the next proposition.

51. Ex. 1. The principal axes of a right-angled triangle at the right angl

are, one perpendicular to the plane and two others inclined to its sides at th

I
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angles 5 tan~^ "aVw '
^^^^^® "• ^^^ ^ ^^'^ ^^^ ^^^^^ of the triangle adjacent to the

right angle.

We have tan2^= _,
—

- , Art. 48, and by Art. 8, A =31% , B=3I^ , F=z3I "„

.

Ji-A 3 o 12

Ex. 2, The principal axes of a quadrant of an ellipse at the centre are, one
" perpendicular to the plane and two others inclined to the principal diameters at the

!
angles ^ tan~^—2—12

»
'^^^^^ " 8,nd 6 are the semi-axes of the ellipse.

Ex. 3. The principal axes of a cube at any point P are, the straight line

joining P to the centre of gravity of the cube, and any two straight lines at P
perpendicular to PO, and perpendicular to each other,

""^

Ex. 4. Prove that the locus of a point P at which one of the principal axes is

J

parallel to a given straight line is a rectangular hyperbola in the plane of which the

: centre of gravity of the body lies, and one of the asymptotes is parallel to the given

straight line. But if the given straight line be parallel to one of the principal axes

at the centre of gravity, the locus of P is that principal axis or the perpendicular

principal plane.

Take the origin at the centre of gravity, and one axis of co-ordinates parallel

to the given straight line.

Ex. 5. An edge of a tetrahedron will be a principal axis at some point in its

length, only when it is perpendicular to the opposite edge. [JuUien.]

Conversely if this condition be satisfied, the edge will be a principal axis at

2
a point C such that 00=-= ON, where N is the middle point of the edge and is

5

the foot of the perpendicular distance between it and the opposite edge.

52. Foci of Inertia. Given the positions of the principal

axes Ox, Oy, Oz at the centre of gravity 0, and the moments of
inertia about them, to find the positions of the principal axes at any

point P in the plane of xy, and the moments of inertia about those

axes.

Let the mass of the body be if, and let A, B be the moments

of inertia about the axes Ox, Oy, of which we shall suppose A
the greater. Take two points S and H in the axis of greatest

moment, one on each side of the origin so that

OS=OH=y^-^M
These points may be called the foci of inertia for that principal

plane.

Because these points are in one of the principal axes at the

.centre of gravity, the principal axes at S and H are parallel to the

'axes of co-ordinates, and the moments of inertia about those in the

plane of xy are respectively A and B +M . OS^ =A, and these

being equal, any straight line through S ot H in the plane of xy

II
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is a principal axis at that point, and the moment of inertia about

it is equal to A.

If P be any point in the plane of xy, then one of the principal

axes at P will be perpendicular to the plane xy. For if j9, q be

the co-ordinates of P, the conditions that this line is a principal

axis are

2to {x —p) z = 0\

tm{y-q)z = 0]'

which are obviously satisfied because the centre of gravity is the

origin, and the principal axes the axes of co-ordinates.

The other two principal axes may be found thus. If two
straight lines meeting at a point P be such that the moments of

inertia about them are equal, then provided they are in a princi-

pal plane the principal axes at P bisect the angles between these

two straight lines. For if with centre P we describe the momental
ellipse, then the axes of this ellipse bisect the angles between any

two equal radii vectores.

Join SP and HP; the moments of inertia about SP, HP are

each equal to A. Hence, if PG and PT are the internal and

I

external bisectors of the angle SPH; PG, PT are the principal

axes at P. If therefore with S and H as foci we describe any
ellipse or hyperbola, the tangent and normal at any point are the

principal axes at that point.

4
53. Take any straight line MN through the origin, making

an angle 6 with the axis of x. Draw SM, HN perpendiculars
MN. The moment of inertia about MN is

= ^cos'^-FPsin'^

= ^-(^-P)sin'^
= A-'M.{OSsmey
=A-M.SM\
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Through P draw FT parallel to MN, and let SY and HZ be the
perpendiculars from S and E on it. The moment of inertia about
Pr is then

= moment about MN + M. MY^
= A+ M{MY- SM) (MY+ S3I )

= A+M.SY.EZ.
In the same way it may be proved that the moment of inertia

about a line PG passing between IT and S is less than A by the
mass into the product of the perpendiculars from S and H on PG.

If therefore with S and H as foci we describe any ellipse or
hyperbola, the moments of inertia about any tangent to either of
these curves is constant.

It follows from this that the moments of inertia about the

principal axes at P are equal to B +M i ~——
J

.

For if a and b be the axes of the ellipse we have a^ — b^= OS^

=—^rr~ . and hence

A + M.SY.HZ=A-\-M¥ = B + 3£a'^JB +M(^^^^^

and the hyperbola may be treated in a similar manner.

54. This reasoning may be extended to points lying in any
given plane passing through the centre of gravity of the body.

Let Ox, Oy be the axes in the given plane such that the product

of inertia about them is zero (Art. 33). Construct the points S
and H as before, so that 08'^ and OH^ are each equal to the

difference of the moments of inertia about Ooo and Oy divided by
the mass. Draw Sy' a parallel through S to the axis of y, the

product of inertia about Sx, Sy' is equal to that about Ox, Oy
together with the product of inertia of the whole mass collected

at 0. Both these are zero, hence the section of the momenta!
ellipsoid at /S^ is a circle, and the moment of inertia about every

straight line through S in the plane xOy is the same and equal

to that about Ox. We can then show that the moments of

inertia about PH and PS are equal; so that PG, PT, the internal

and external bisectors of the angle SPH are the principal dia-

meters of the section of the momental ellipsoid at P by the given

plane. And it also follows that the moments of inertia about the

tangents to a conic whose foci are S and H are the same.

55, Ex. 1. To find the foci of inertia of an elliptic area. The momenta of

inertia about the major and minor axes are M j and M j . Hence the minor axis
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is the axis of greatest moment. The foci of inertia therefore lie in the minor axis

at a distance from the centre= -,^0^- 6^, i.e. half the distance of the geometrical

foci from the centre.

Ex. 2. Two particles each of mass m are placed at the extremities of the minor

axis of an elliptic area of mass M. Prove that the principal axes at any point of

the circumference of the ellipse will be the tangent and normal to the ellipse, pro-

., , m 5 e^
Vlded -r: = 7z

if ~81-2c2"

Ex. 3. At the points which have been called foci of inertia two of the principal

moments are equal. Show that it is not in general true that a point exists such

that the moments of inertia about all axes through it are the same, and find the con-

ditions that there may be such a point.

Eefer the body to the principal axes at the centre of gravity. Let P be the point

required, (at, y, z) its co-ordinates. Since the momental ellipsoid at P is to be a

sphere, the products of inertia about aU rectangular axes meeting at P are zero.

Hence, by Art. 13, xy=0, yz=0, zx= 0. It follows that two of the three x, y, z

must be zero, so that the point must be on one of the principal axes at the centre

of gravity. Let this be called the axis of z. Since the moments of inertia about

three axes at P parallel to the co-ordinate axes are A +MA^ B + Mz^ and (7, we see

that these cannot be equal unless A=B and each is less than C. There are then

two points on the axis of unequal moment which are equimomental for all axes.

[Poisson and Binet.]

56. Arrangement of Principal axes. Given the posi-

tions of the principal axes at the centre of gravity O and the

moments of inertia about them, to find the positions of ilie principal

axes*, and the principal moments at any other point P.

Let the hocly be referred to its priucipal axes at the centre of

gravity 0, let A, B, C hQ its principal moments, the mass of the
body being taken as unity. Construct a quadric confocal with
the elhpsoid of gyration, and let the squares of its semi-axes be
a^=A + \, h^ = B + \, c* = C + \. Let us find the moment of

inertia with regard to any tangent plane.

Let (a, ^, 7) be the direction angles of the perpendicular to

any tangent plane. The moment of inertia, with regard to a
parallel plane through 0, is

The moment of inertia, with regard to the tangent plane,
formed by adding the square of the perpendicular distance 1

* Some of the following theorems were given by Sir William Thomson ani

Mr Townsend, in two articles which appeared at the same time in the Mathcmatk
Journal, 1846. Their demonstrations are different from those given yi this treati
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tween the planes, viz.

(A + \) cos"a + (B + X) cos'lS + ((7 + X) cos' 7,

we get

moment of inertia with re-] A + B+ C
+ X

gard to a tangent planej 2

B+C-A ,= 2 +^-

Thus the moments of inertia with regard to all tangent planes to

any one quadric confocal with the ellipsoid of gyration are ilie

same.

These planes are all principal planes at the point of contact.

For draw any plane through the point of contact P, then in the
case in which the confocal is an ellipsoid, the tangent plane
parallel to this plane is more remote from the origin than this

plane. Therefore, the moment of inertia with regard to any plane
through P is less than the moment of inertia with regard to a
tangent plane to the confocal ellipsoid through P. That is, the
tangent plane to the ellipsoid is the principal plane of greatest

moment. In the same way the tangent plane to the confocal

hyperboloid of two sheets through P is the principal plane of

least moment. ' It follows that the tangent plane to the confocal

hyperboloid of one sheet is the principal plane of mean moment.

Through a given point P, three confocals can be drawn, the

normals to these confocals are, by Art. 16, the principal axes at P.

By Art. 5, Ex. 3, the principal axis of lea^t moment is normal
to the confocal ellipsoid and of greatest moment normal to the

confocal hyperboloid of two sheets.

57. The moment of inertia with regard to the point P is, by

Art. 14, ^"^f
"^^

+ 0P\ Hence, by Art. 5, Ex. 3, the moments

of inertia about the normals to the three confocals through P
whose parameters are X^, X^, X3 are respectively

OP'-X,, OP'-X,, 0P'-\.

58. If we describe any other confocal and draw a tangent

cone to it whose vertex is P, the axes of this cone arc known to

be the normals to the three confocals through P. This gives

another construction for the principal axes at P.

If this confocal diminish without limit, until it becomes a

focal conic, then the principal diameters of the system at P are

the principal diameters of a cone whose vertex is P and base

a focal conic of the ellipsoid of gyration at the centre of gravity.
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59. If we wish to use only one quadric, we may consider the

confocal ellipsoid through P. We know* that the normals to the

* These propositions are to be found in books on Solid Geometry, they may also

be proved as follows.

Let the confocal ellipsoid pass near P and approach it indefinitely. The base

of the enveloping cone is ultimately the Indicatrix ; and as the cone becomes ulti-

mately a tangent plane, one of its axes is ultimately a perpendicular to the plane of

the Indicatrix. Now in any cone two of its axes are parallel to the principal diame-

ters of any section perpendicular to the third axis. Hence the axes of the envelop-

ing cone are the normal to the surface and parallels to the principal diameters of

the Indicatrix. But all parallel sections of an ellipsoid are similar and similarly

situated, hence the principal diameters of the Indicatrix are parallel to the princi-

pal diameters of the diametral section parallel to the tangent plane at P.

To find the principal moments, we may reason as follows. Let a tangent plane

to the ellipsoid be drawn perpendicular to any radius vector OQ of the diametral

section of OP, then the point of contact T, OQ and OP will lie in one plane when

OQ is an axis of the section. For draw through T a section parallel to the diame-

tral section, and let 0' be its centre, and let O'Y' be a perpendicular from 0* on the

tangent plane, which touches at T. Then OQ, O'Y' and OP are in one plane.

Now consider the section whose centre is 0'; O'Y' is the perpendicular on the tan-

gent to an ellipse whose point of contact is T. Hence O'T, O'T do not coincide

unless O'Y' be the direction of the axis of the ellipse. But this section is similar

to the diametrical section to which it was drawn parallel. Hence OQ is an axis of

the diametral section.

Let PR be a straight line drawn through P parallel to OQ to meet in B tb

tangent plane which touches in T. Then BP, RT are two tangents at right angl

to the ellipse PQT. Hence
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other two confocals are tangents to the lines of curvature on the

ellipsoid, and are also parallel to the principal diameters of the

diametral section made by a plane parallel to the tangent plane

at P. And if D^, D^ be these principal semi-diameters, we kaow
that

Hence, if through any point P we describe the quadric

A+X B+X C+X
the axes of co-ordinates being the principal axes at the centre of

gravity, then the principal axes at P are the normal to this

quadric, and parallels to the axes of the diametral section made
by a plane parallel to the tangent plane at P. And if these axes

be 2Dj^ and 2D^, the principal moments at Pare

OP'-X, OP'-X + B^', OP'~X + D^\

Ex. If two bodies have the same centre of gravity, the same principal axes at

the centre of gravity and the differences of their principal moments equal, each to

each, then these bodies have the same principal axes at all points.

60. Condition a line is a principal axis. The axes of
co-ordinates heing the principal axes at the centre of gravity it is

required to express the condition that any given straight line may he

a principal axis at some point in its length and to find that point.

Let the equations to the given straight line be

I m n

then it must be a normal to the quadric

y"

.(1),

+^^ +7^ = 1 (2)A + X B+X G +X
at the point at which the straight line is a principal axis.

Hence comparing the equation to the normal to (2) with (1),

we have

3Tx='''' BTx^^""' CTx='"'
^^>'

0J?2= snm of the squares of the semi-&xes of the ellipse

becanse OP, OQ are conjugate diameters.

The moment of inertia about PR, a perpendicular to a tangent plane, has been

proved above to be OR"^ - \, hence the moment of inertia about a parallel through P

to the axis OQ is OP^ + OQ^ - X.
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these six equations must be satisfied by the same values of a;, y, s,

\ and /i. Substituting for x, y, z from (3) in (1), we get

'^
I '^ m n

eliminating fi from these last equations we have

/_! 1_5 ^_/
I m _ m n _ n I _
A^^~ir^~TrrA~^ ^*^*

This clearly amounts to only one equation, and is the required

condition that the straight line should be a principal axis at some
point in its length.

Substituting for x, y, z from (3) in (2), we have

which gives one value only to \. The values of \ and fi having

been found, equations (3) will determine x, y, z the co-ordinates

of the point at which the straight line is a principal axis.

The geometrical meaning of this condition may be found by
the following considerations, which were given by Mr Townsend
in the Matliematical Journal. The normal and tangent plane at

every point of a quadric will meet any principal plane in a point

and a straight line, which are pole and polar with regard to the

focal conic in that plane. Hence to filid whether any assumed
straight line is a principal axis or not, draw any plane perpen-

dicular to the straight line and produce both the straight line

and the plane to meet any principal plane at the centre of gravity.

If the line of intersection of the plane be parallel to the polar

line of the point of intersection of the straight line with respect

to the focal conic, the axis will be a principal axis, if otherwise it

will not be so. And the point at which the assumed straight line

is a principal axis may be found by drawing a plane through the

polar line perpendicular to the straight line. The point of inter-

section is the required point.

The analytical condition (4) exactly expresses the fact that the

polar line is parallel to the intersection of the plane.

61. Ex. 1. Given a plane :; + - + --l=0, there is always some point in it

f g h

at which it is a principal plane. Also this point is its intersection with the straight

'^Qfx-A=gy- B=hz~ C.

Ex. 2. Let two points P, Q he so sitaated that a principal axis at P intersects a

principal axis at Q. Then if two planes be drawn at P and Q perpendicular to

these principal axes, their intersection will be a principal axis at the point where

it is cut by the plane containing the principal axes at P and Q. [Mr Townsend.]
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For let the principal axes at P, Q meet any principal plane at the centre of

gravity in p, q, and let the perpendicular planes cut the same principal plane in

LN, MN. Also let the perpendicular planes intersect each other in RN. Then
BN is perpendicular to the plane containing the points P, Q, p, q. Also since the

polars oip and q are LN, MN, it follows that pq is the polar of the point N. Hence

the straight line EN satisfies the criterion of the last Article.

Ex. 3. If P he any point in a principal plane at the centre of gravity, then

every axis which passes through P, and is a principal axis at some point, lies in one

of two perpendicular planes. One of these planes is the principal plane at the

centre of gravity, and the other is a plane perpendicular to the polar line of P with

regard to the focal conic. Also the locus of all the points Q at which QP is a prin-

cipal axis is a circle passing through P and having its centre in the principal plane.

[Mr Townsend.]

Ex. 4. The edge of regression of the developable surface which is the envelope

of the normal planes of any line of curvature drawn on a confocal quadric is a

curve such that all its tangents are principal axes at some point in each.

62. Locus of equal Moments. To find the locus of the

points at which two principal moments of inertia are equal to each

other.

The principal moments at any point P are

If we equate /^ and I^ we have D^ = 0, and the point P must
lie on the elliptic focal conic of the ellipsoid of gyration.

If we equate I^ and 7g we have D^ = D^, so that P is an um-
bilicus of any ellipsoid confocal with the ellipsoid of gyration. The
locus of these umbilici is the hyperbolic focal conic.

In the first of these cases we have \ = — C, and D^ is the semi-

diameter of the focal conic conjugate to OP. Hence D^ + OP^ =
sum of squares of semi-axes = A — C+B— C. The three prin-

cipal moments are therefore I^= I^= OP^ + C, I^ = A-\-B-C, and

the axis of unequal moment is a tangent to the focal conic.

The second case may be treated in the same way by using

a confocal hyperboloid, we therefore have I^ = I^= OP^ + B,

I^=^A + C— B, and the axis of unequal moment is a tangent

to the focal conic.

These results follow also by combining Arts. 57 and 58. The cone which

envelopes the ellipsoid of gyration and has its vertex at P must by these articles be

a right cone if two principal moments at P are equal. By known propositions in

solid Geometry this only happens when the vertex lies on a focal conic and the un-

equal axis is then a tangent to that conic.

63. To find the curves on any confocal quadric at which a

principal moment of inertia is equal to a given quantity I.

Firstly. The moment of inertia about a normal to a confocal

quadric is OP^ - X. If this be constant, we have OP constant,
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and therefore the required curve is the intersection of that

quadric with any concentric sphere. Such a curve is a sphero-conic.

Secondly. Let us consider those points at •which the moment
of inertia about a tangent is constant.

Construct any two confocals whose semi-major axes are a and
a'. Draw any two tangent planes to these which cut each other

at rigfht angles. The moment of inertia about their intersection

is the sum of the moments of inertia with regard to the two
planes, and is therefore

Thus the moments of inertia about the intersections of perpendicular

tangent planes to the same confocals are the same.

Let a, a', a" be the semi-major axes of the three confocals

which meet at any point P, then since confocals cut at right

angles, the moment of inertia about the intersection of the con-

focals a, a" is

The intersection of these two confocals is a line of curvature

on either. Hence the moments of inertia about the tangents to any
line of curvature are equal to one another; and these tangents are

principal axes at the point of contact

On the quadric a draw a tangent PT making any angles
<f)

and s"
- ^ with the tangents to the lines of curv'ature at the

point of coutact P. If /,, /, be the moments about the tangents

to these lines of curvature, the moment of inertia about the

tangent PT
= I^ cos'^ + /g sin*^

= 5 + C - ^ + (a"" + a») cos> -I- (a'+ a") sin«<^.

But along a geodesic on the quadric a, o''sin'0+ a'^cos'^ is

constant. Hence the moments of inertia about the tangents to

any geodesic on the quadric are equal to each other.

64. Ex. 1. If a straight line touch any two confocals whose Bemi-major axes

are a, a', the moment of inertia about it is B + C-.i + a' + a''.

Ex. 2. When a body is referred to its principal axes at the centre of gravity,

show how to find the co-ordinates of the point P at which the three principal

moments are eqaal to the three given quantities IJ-J^. [JuUien's Problem.]

The elliptic co-ordinates of P are evidently a?=\(I^-^I^-J.^- B-C + A) &c\
and the co-ordinates (z, y, z) may then be found by Dr Salmon's fprmalse,
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Ex. 3. Let two planes at right angles touch two confocals whose semi-major

axes are a, a'; and let a, a' be the values of a, a', when the confocals touch the intersec-

-tion of the planes; then a^+ a'^=8? + a.'% and the product of inertia with regard to

the two planes is (aV^ - a®a'^)*.

65. Equi-momental Surface. The locus of all those points

at which one of the principal moments of inertia of the body is

equal to a given quantity is called an equi-momental surface.

To find the equation to such a surface we have only to put I^

. constant, this gives '\=r^ — I. Substituting in the equation to

the subsidiary quadric, the equation to the surface becomes

a^ V" 2*

•^
-i 1 -.2 1 .2 . D T*^ .'i. . 2 . 1 , m I -•••

Through any point F on an equi-momental surface describe

the confocal quadric such that the principal axis is a tangent

to a line of curvature on the quadric. By Art. 63, one of the

intersections of the equi-momental surface and this quadric is the

line of curvature. Hence the principal axis at F about which
the moment of inertia is / is a tangent to the equi-momental
surface.

Again, construct the confocal quadric through F such that

the principal axis is a normal at P, then one of the intersections

of the momental surface and this quadric is the sphero-conic

tiirough F. The normal to the quadric, being the principal axis,

has just been sho^vn to be a tangent to the surface. Hence the

tangent plane to the equi-momental surface, is the plane which
contains the normal to the quadric and the tangent to the sphero-

tjonic.

To draw a perpendicular from the centre on this tangent

plane, we may follow Euclid's rule. Take FF' a tangent to the

sphero-conic, drop a perpendicular from on FF\ this is the

radius vector OF, because FF' is a tangent to the sphere. At F
in the tangent plane draw a perpendicular to FF\ this is the

normal FQ to the quadric. From drop a perpendicular 0^ on

this normal, then OQ is a normal to the tangent plane. Hence
this construction,

If V he any point on an equi-momental surface whose para-

meter is I and OQ a perpendicular from the centre on the tangent

plane, then PQ is the principal axis at P about which the moment

of inertia is the constant quantity I.

The equi-momental becomes Fresnel's wave surface when
I is greater than the greatest principal moment of inertia at the

centre of gravity. The general form of the surface is too well

known to need a minute discussion here. It consists of two
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sheets, which become a concentric sphere and a spheroid when
two of the principal moments at the centre of gravity are equal.

When the principal moments are unequal, there are two singu-

larities in the surface.

(1) The two sheets meet at a point P in the plane of the

greatest and least moments. At P there is a tangent cone to

the surface. Draw any tangent plane to this cone, and let OQ
be a perpendicular from tlie centre of gravity on this tangent

plane. Then PQ is a principal axis at P. Thus there are an
infinite number of principal axes at P because an infinite number
of tangent planes can be drawn to the cone. But at any given

point there cannot be more than three principal axes unless two
of the principal axes be equal, and then the locus of the principal

axes is a plane. Hence the point P is situated on a focal conic,

and the locus of all the lines FQ is -a normal plane to the conic.

The point Q lies on a sphere whose diameter is OP, hence the

locus of Q is a circle.

(2) The two sheets have a common tangent plane which
touches the surface along the curve. This curve is a circle whose
plane is perpendicular to the plane of greatest and least moments.
Let OP be a perpendicular from on the plane of the circle,'

then P' is a point on the circle. If R be any other point on the

circle the principal axis at P. is RP'. Thus there is a circular

ring of points at each of which the principal axis passes through

the same point and the moments of inertia about these principal

axes are all equal.

The equation to the equi-momental surface may also be used

for the purpose of finding the three principal moments at any
point whose co-ordinates (ar, y, z) are given. If we clear the equation

of fractions, we have a cubic to determine / whose roots are the

three principal moments.

Thus let it be required to find the locus of all those points

in a body at which any symmetrical function of the three prin-

cipal moments is equal to a given quantity. We may express

this symmetrical function in terms of the coefficients by the usual

rules, and the equation to the locus is found.

Ex. 1. If an equi-momental surface cut a quadrio confocal with the ellipsoid

of gjration at the centre of gravity, then the intersections are a sphero-conic and

a line of curvature. But if the quadric be an ellipsoid, both these cannot be real.

For if the surface cut the ellipsoid in both, let P be a point on the line of curva-

ture, and P' a point on the sphero-conic, then by Art. 69, OP* + Di*=OP^, which

is less than ^ +X. But OI» + Di^+ J)2^=A + B + C+3\, therefore D,« > B + C+2\,
which is >A+2\. Henco D, >than the greatest radius vector of the ellipsoid,

which is impossible.

II
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Ex, 2. Find the locus of all those points in a body at which

(1) the sum of the principal moments is equal to a given quantity /.

(2) the sum of the products of the principal moments taken two and two

together, is equal to I^.

(3) the products of the principal moments is equal to H.

The results are

(1) a sphere whose radius is . /—L '
^ Art. 13.

(2) the surface

+ Ax'+ £y'+ Cz^+AB + BC+CA ) '

(3) the surface A'B'C - Ayz^ - Fz^tP- - C'x^y^ - IxhjH^= I»,

where ^'=4 +^2+2*, with similar expressions for B', C".

R. D.



CHAPTER II.
i,(.-'i'>~

I
d'alembert's principle, &c.

66. The principles, by which the motion of a single particle"

under the action of given forces can be determined, will be found

discussed in any treatise on Dynamics of a Particle. These prin-

ciples are called the three laws of motion. It is shown that if

{x, y, z) be the co-ordinates of the particle at any time t referred

to three rectangular axes fixed in space, m its mass \ X, Y, Z the

forces resolved parallel to the axes, the motion may be found by

solving the simultaneous equations.

If we regard a rigid body as a collection of material particl

connected by invariable relations, we might write down the equ
tiohs of the several particles in accordance with the principles juj

stated. The forces on each particle are however no longer know
some of them being due to the mutual actions of the particles.

"We assume (1) that the action between two particles is aloi

the line which joins them, (2) that the action and reaction betwe(

any two are equal and opposite. Suppose there are n particle

then there will be Sn equations, and, as shown in any treat!

on Statics, S?i — 6 unknown reactions. To find the motion it wi

be necessary to eliminate these unknown quantities. We m
expect to find six resulting equations, and these will be she

a little farther on, to be sufficient to determine the motion
the body.

When there are several rigid bodies which mutually act an>

re-act on each other the problem becomes still more complicated

But it is unnecessary for us to consider in detail, either this or tb<

preceding case, for D'Alembert has proposed a method by wliidl

all the necessary equations may be obtained without \vriting dowij

the equations of motion of the several particles, and withoU|
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making any assumption as to the nature of the mutual actions

except the following, which may be regarded as a natural conse-

quence of the laws of motion.

The internal actions and reactions of any system of rigid bodies

in motion are in equilibrium amongst themselves.

67. To explain D'Alembert's Principle.

In the application of this principle it will be convenient to

use the term effective force, which may be defined as follows.

When a particle is moving as part of a rigid body, it is acted

on by the external impressed forces and also by the molecular
reactions of the other particles. If we consider this particle to

be separated from the rest of the body, and all these forces re-

moved, there is some one force which, under the same initial

conditions, would make it move in the same way as before.

This force is called the effective force on the particle. It is

evidently the resultant of the impressed and molecular forces on
the particle.

Let m be the mass of the particle, (cc, y, z) its co-ordinates

referred to any fixed rectangular axes at the time t. The accele-

d'^x d^v d'^z
rations of the particle are -^ , -^ and -^ . Let / be the

resultant of these, then, as explained in Dynamics of a Particle,

the effective force is measured by mf
Let F be the resultant of the impressed forces, R the resultant

of the molecular forces on the particle. Then mf is the resultant

of F and R. Hence if mf be reversed, the three F, R and mf are

in equilibrium.

We may apply the same reasoning to every particle of each

body of the system. We thus have a group of forces similar to R,

a group similar to F, and a group similar to mf, these three groups

will form a system of forces in equilibrium. Now by D'Alembert]s

principle the group jR will itself form a system of forces in equili-

brium. Whence it follows that the group F will be in equilibrium

with the group mf Hence

, Ifforces equal to the effective forces but acting in exactly opposite

directions were applied at each point of the system these would be

in equilibrium with the impressed forces.

By this principle the solution of a dynamical problem is

reduced to a problem in Statics. The process would be as

follows. We first choose some quantities by means of which the

position of the system in space may be fixed. We then express

the effective forces on each element in terms of these quantities.

4—2
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These reversed will be in equilibrium "with the given impressed

forces. Lastly, the equations of motion for each body may be
formed, as is usually done in Statics, by resolving in three direc-

tions and taking moments about three straight lines.

68. Before the publication of D'Alembert's principle a vast number of Dynamical

problems had been solved. These may be found scattered through the early

volumes of the Memoirs of St Petersburg, Berlin and Paris, in the works of John

Bernoulli and the Opuscula of Euler. They require for the most part the determi-

nation of the motions of several bodies with or without weight which push or pull

each other by means of threads or levers to which they are fastened or along which

they can glide, and which having a certain impulse given them at first are then left

to themselves or are compelled to move in given lines or surfaces.

The postulate of Huyghens, "that if any weights are put in motion by the force

of gravity they cannot move so that the centre of gravity of them all shall rise

higher than the place from which it descended," was generally one of the principles

of the solution : but other principles were always needed in addition to these, and

it required the exercise of ingenuity and skill to detect the most suitable in each

case. Such problems were for some time a sort of trial of strength among mathe-

maticians. The Traits de Dynamiqw published by D'Alembert in 1743, put an end

to this kind of challenge by supplying a direct and general method of resolving or

at least throwing into equations any imaginable problem. The mechanical diflS-

culties were in this way reduced to difficulties of Pure Mathematics. See Montucla,

Vol. III. page 615, or Whewell's version of the same in his History of the Inductive

Sciences.

D'Alembert uses the following words:—•' Solent A, B, C, &c. lea corps qui com-

posent le systSme, et supposons qu'on leur ait imprim6 les mouvemens a, b, c, drc.

qu'ils soient forces, fi. cause de leur action mutuelle, de changer dans les mouvemens
a, b, c, Ac. II est clair qu'on pent regarder le mouvement a imprim6 au corps A
comme compost du mouvement a, qu'il a pris, et d'un autre mouvement a ; qu'on

pent de m^me regarder les mouvemens 6, c, Ac. comme composes des mouvemens
b, /3; c, 7; &c., d'ou il s'ensuit que le mouvement des corps A,B, C, Sec. entr'eux

auroit ^t6 le meme, si au hen de leur donner les impulsions a, 6, c, on leur efit

donnd a-la-fois les doubles impulsions a, o; b, /S; &c. Or par la supposition lea

corps A,B,C, &c. ont pris d'eux-mdmes les mouvemens a, b, c, &c. done les mouve-
mens a, p, y, &c. doivent §tre tels qu'ils ne deiangent rien dans les mouvemens
a, b, c, &c. c'est-a-dire que si les corps n'avoient re<?u que les mouvemens a, /3, y,

&c. ces mouvemens auroient dA se d^truire mutuellement, et le systeme demeurer
en repos. De Ik resulte le principe suivant pour trouver le mouvement de plusieurs

corps qui agissent les uns sur les autres, D^composez les mouvemens a, b, c, &c.

imprimis a chaque corps, chacun en deux autres a, a; b, ^; c, 7; etc. qui soient

tels que si Ton n'efit imprim^ aux corps que les mouvemens a, b, c, <S^c. ils eussent

pu conserver les mouvemens sans se nuire r^ciproquement ; et que si on ne leur efit

imprim^ que les mouvemens o, /3, 7, &c. le systfime fflt demeur6 en repos; il est

clair que a, b, c, &c. seront les mouvemens que ces corps prendront en vertu de leur

action. Ce qu'il falloit trouver."

69. The following remarks on D'Alembert's Principle have
been supplied by Sir G. Airy

:

I have seen some statements of or remarks on this principle which appear
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to me to be erroneous. The principle itself is not a new physical principle, nor
any addition to existing physical principles; but is a convenient principle of

combination of mechanical considerations, which results in a comprehensive

process of great elegance.

The tacit idea, which dominates through the investigation, is this:—That

every mass of matter in any complex mechanical combination may be conceived

as containing in itself two distinct properties:—one that of connexion in itself,

of susceptibility to pressure-force, and of connexion with other such masses, but

not of inertia nor of impressions of momentum:—the other that of discrete

molecules of matter, held in their places by the connexion-frame, susceptible to

externally impressed momentum, and possessing inertia. The union produces

an imponderable skeleton, carrying ponderable particles of matter.

Now the action of external momentum-forces on any one particle tends to

produce a certain momentum-acceleration in that particle, which (generally) is

not allowed to produce its full effect. And what prevents it from producing its

full effect? It is the pressure of the skeleton-frame, which pressure will be

measured by the difference between the impressed momentum-acceleration and

the actual momentum-acceleration for the same. Thus every part of the skeleton

sustains a pressure-force depending on that difference of momenta. And the

whole mechanical system, however complicated, may now be conceived as a system

of skeletons, each sustaining pressure-forces, and (by virtue of their combination)

each impressing forces on the others.

And what will be the laws of movement resulting from this connexion? The

forces are pressure-forces, acting on imponderable skeletons, and they must balance

according to the laws of statical equilibrium. For if they did not, there would

be instantaneous change from the understood motion, which change would be

accompanied with instantaneous change of momentum-acceleration of the mole-

cules, that would produce different pressures corresponding to equilibrium, (It

is to be remarked that momentum cannot be changed instantaneously, but mo-

mentum-acceleration can be changed instantaneously.)

"We come thus to the conclusion, that, taking for every molecule the dif-

ference between the impressed momentum-acceleration and the actual momentum-

acceleration, those differences through the entire machine will statically balance.

And—combining in one group all the impressed momentum-accelerations, and in

another group all the actual momentum-accelerations—it is the same as saying

that the impressed momentum-accelerations through the entire machine will balance

the actual momentum-accelerations through the entire machine. This is the

usual expression of D'Alembert's principle.

70. Example of D'Alembert's Principle. A heavy body

is capable of motion by two hinges about a horizontal axis, which

axis is made to rotate with a uniform angular velocity (o about a

vertical axis intersecting it in a point 0. It is required to find the

conditions that the body may be inclined at a constant angle to the

vertical.

Let the horizontal axis which is fixed in the body be taken as

axis of y, and let two other axes also fixed in the body be taken

as a set of rectangular axes with origin 0. Let 6 be the angle
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the plane of yz makes with a vertical plane through Oy. Our
ohject is to find the relation between 6 and to.

By hypothesis each particle P describes a horizontal circle

whose centre C is in the vertical through 0. If r be the radius

CP of this circle, and m the mass, the effective force on the

particle is wwV and is directed along the radius. When reversed

this will act in the direction CP.

The impressed forces on the body are its weight which may be
supposed to act at the centre of gravity and the actions at the

hinges. To avoid these last, we shall take moments about the

axis Oy. Then the moment of the reversed effective forces toge-

ther with the moment of the weight will be zero.

Let M be the mass of the body, x, y, z the co-ordinates of the

centre of gravity, ^ its distance from the vertical plane through Oy.

The moment of the weight is Mg^. The resolved part of the

effective force parallel to Oy has no moment about Oy. The
resolved part perpendicular to the vertical plane through Oy is

ma)*/3 if p be the distance of the particle from that plane. Tht
.equation of moments gives if CO = u

My^+Xvioy'pu^O.

By projecting the co-ordinates on CO and CP we have

u = — xsm6 + z cos 0,

p= X cos ^ 4- ^ sin 6,

^= xco^O -\-Z8in6.

Substituting we get

Mg (x cos6 + z sin ^) = w'^ {| sin 26X111 {x^ - z^) - cos 16t,mxz\,

When the shape and structure of the body are known, t

integrals 2w (a;' — ^) and %m xz can be found by the methods

I
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the preceding chapter or by direct integration. This equation
will then give the required relation between Q and ca.

It may be noticed that the only manner in which the form of

the body enters into the equation is through its moments and
products of inertia. If we change the body into any equi-mo-
mental one, the equation connecting Q and w will be unaltered.

So far as this problem is concerned, a body may be said to be
given Dynamically when its mass, centre of gravity, principal

axes, and principal moments of inertia at the centre of gravity are

given. This remark will be found to be of general application.

Ex, 1. If the body be pushed along the axis of y and made to rotate about the

Tertical with the same angular velocity as before, show that no effect is produced

on the inclination of the body to the vertical.

Ex. 2. K the body be a heavy disc capable of turning about a horizontal axis

Oy in its own plane, show that the plane of the disc will be vertical unless w'>V5 ,

where h is the distance of the centre of gravity of the disc from Oy and k the radius

of gyration about Oy.

Ex. 3. If the body be a circular disc capable of turning about a horizontal axis

perpendicular to its plane and intersecting the disc in its circumference, show that

if the tangent to the disc at the hinge make an angle with the vertical, the

angular velocity a must be a /—;-

V a siisind

'

Ex. 4. Two equal balls A and B are attached to the extremities of two equal

thin rods Aa, Bb. The ends a and h are attached by hinges to a fixed point and

the whole is set in rotation about a vertical through as in the Governor of the

Steam-Engine. If the mass of the rods be neglected show that the time of rotation

is equal to the time of oscillation of a pendulum whose length is the vertical distance

of either sphere below the hinges at 0.

Ex. 5. If in the last example m be the mass of either thin rod and M that of

tither sphere, I the length of a rod, r the radius of a sphere, h the depth of either

centre below the hinge, then the length of the pendulum is -—
•

""..,
\^

, .

71. General Equations of Motion. To apply D'Alem-
hert's principle to obtain the equations of motion of a system of
rigid bodies.

Let (a*, y, z) be the co-ordinates of the particle m at the time

t referred to any set of rectangular axes fixed in space. Then

j^> "Tt^j
^"^^ -j7i> "will be the accelerations of the particle. Let

X, Y, Zhe the impressed accelerating forces on the same particle

resolved parallel to the axes. By D'Alembert's principle the

forces

<^-w)' <^-% K^-S)'
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together with similar forces on every particle will be in equi-

librium. Hence by the principles of Statics we have the equation

and two similar equations for y and z ; these are obtained by

resolving parallel to the axes. Also we have

and two similar equations for zx and ajy; these are obtained by

taking moments about the axes.

These equations may be written in the more convenient forms

at at

J- Xm ~=tinY
at at

d _, dz V • -7

(A).

d
dt

d

dt

.(B).

In a precisely similar manner by taking the expressions for^

the accelerations in polar co-ordinates we should have obtained]

another but equivalent set of equations of motion.

72. Let us consider the meaning of these equations without reference to axes

of co-ordinates. The effective forces are to be equivalent to the impressed forces.
]

But^s shown in Statics. any system of forces,and therefore each of thescis equi.

valent to a single force and a single couple at some point taken as origin. Thesa
\

resultant forces and couples must therefore be equivalent, each to each..

If we multiply the mass m of any particle P by its velocity r we have tliej

momentum mv of the particle. Let us represent this in direction and magnitude]

by a straight line PP'. Then, just as in Statics, this momentum is equivalent to
j

an equal and parallel linear momentum at which we may represent by OM, and 1

a couple whose moment is mvp, where p is the perpendicular distance between O.^f]

and PP'. The plane of this couple is the plane containing OM and PP", and it -.

may as usual be represented in direction and magnitude by an axis ON perpen-

dicular to its plane. This couple is sometimes called an angular momentum.
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Let Oilf, ON' be the positions of these two lines after an interval of time dt. Then
MM', NN' will represent in direction and magnitude the linear momentum and the

angular or couple momentum added on in the time dt. Hence the effective force

on any particle m is equivalent to a single linear effective force acting at repre-

MM' . NN'
sented by —^— , and a single effective couple represented by —r— .

dt dt

Let V, OR he two straight lines drawn through the origin to represent in

direction and magnitude the resultant linear momentum and resultant couple

momentum of the whole system at any time t. Let OV, OR' be the positions of

these lines at the time t + dt. Then OF is the resultant of the group OM corre-

sponding to all the particles of the system, and OV the resultant of the group OM'.

VV
Hence —r- represents the whole Imear effective -force of the system at the time t.

TTTT'
By similar reasoning --,-- represents the resultant effective couple of the system.

Thus it appears that the points V and H trace out two curves in space whose

properties are analogous to those of the hodograph in Dynamics of a particle.

Prom this reasoning it follows, that if F^. be the resolved part of the momen-

tum of a system in the direction of any straight line Ox, and R^ the moment

of the momentum about that straight line, then —^ and —-— are respectively

the resolved part along, and the moment about that straight line, of the effective

force of the whole system.

Let us now refer the whole system to Cartesian co-ordinates as in Art. 71. We

Bee that m -^ , m-^, m-y are the resolved parts of the momentum of the particle m.
dt at dt

Hence OF is the resultant of ^^-^< S7ft -£ , and Xm — . Also ""^ [^
'j't ~

V
'jj.)

^^

the moment of the momentum of the particle vi about the axis of z. Hence OR
is th« resultant of

^ / dy dx\ ^ ^ dz dy\ ^ f dx dz\

^'\'^it-yi:t)^ -"^{ydt-'^t}' 2'»(,^di-^d-J-

Now D'Alembert's principle asserts that the whole effective forces of a system

are together equivalent to the impressed forces. Hence whatever co-ordinates may

be used, if X and L be the resolved parts and moment of the impressed moving

forces respectively along and about any fixed straight Une which we shall call the

axis of X, the equations of motion are

dt ' ' dt

The first of these corresponds to equations (A), the second to equations (B) of

Art. 71.

We may notice the following cases.

(1) If no impressed forces act on the system, the two lines OV, OR are abso-

lutely fixed in direction and magnitude throughout the motion.

(2) If all the impressed forces pass through a fixed point, let this point be

chosen as the origin, then though OV may be variable, OR is fixed in position and

magnitude.
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(3) If all the impressed forces be equivalent to a system of couples, then though

OH may be variable, OF is fixed in position and magnitude*.

73. Co-ordinates of a body. The equations of motion of

Art. 71 are the general equations of motion of any dynamical

system. They are, however, extremely inconvenient in their present

form. When the system considered is a rigid body and not merely

a finite number of separate particles, the 2's are all definite inte-

grals. There are also an infinite number of xs, y's and 2S all

connected together by an infinite number of geometrical equations.

It will be necessary, as suggested in Art. 67, to find some quantities

-which may determine the position of the body in space and express

the effective forces in terms of these quantities. These are called

the co-ordinates of the bodyf. It is most important in theoretical

dynamics to choose these co-ordinates properly. They should be

(1) such that a knowledge of them in terms of the time determines

the motion of the body in a convenient manner, and (2) such that

the dynamical equations when expressed in terms of them may
be as little complicated as possible.

74. Let us first enquire how many co-ordinates are necessary

to fix the position of a body.

The position of a body in space is given when we know the

co-ordinates of some point in it and the angles which two straight

lines fixed in the body make with the axes of co-ordinates. There
are three geometrical relations existing between these six angles,

so that the position of a body may be made to depend on six

independent variables, viz. three co-ordinates and three angles.'

These might be taken as the co-ordinates of the body. By the

term " co-ordinates of a body " is meant any quantities Avhich de-

termine the position of the body in space.

It is evident that we may express the co-ordinates (x, i/, z) of

any particle wi of a body in terms of the co-ordinates of that body
and quantities which are known and remain constant during the

motion. First, let us suppose the system to consist only of a
single body, then if we substitute these expressions for x, y, z in

the equations (A) and (B) of Art. 71, we shall have six equations

to determine the six co-ordinates of the body in terms of the

time. Thus the motion will be found. If the system consist of

several bodies, we shall, by considering each separately, have six

equations for each body. If there be any unknown reactions

between the bodies, these will be included in X, F, Z. For each

* In a memoir on the differential coefficients and determinants of lines, Mr Cohen
has discussed some of the properties of these resultant lines. Phil. Trans. 18G2.

t Sir W. Hamilton uses the phrase " marks of position," but subsequent vrriters

have adopted the term co-ordinates. See Cayley's Report to the Biit. Assoc, 1857.
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reaction there will be a corresponding geometrical relation con-
necting the motion of those bodies. Thus on the whole we shall

have sufficient equations to determine the motion of the system.

When the motion is in two dimensions these six co-ordinates

become three. These are the two co-ordinates of the fixed point

in the body, and the angle some straight line fixed in the body
makes with a straight line fixed in space.

75. Let us next consider how the equations of motion formed

by resolution can be simplified by a proper choice of co-ordinates.

We must find the resolved part of the momentum and the re-

solved part of the effective forces of a system in any direction.

Let the given direction be taken as the axis of x. Let {x, y, z)

be the co-ordinates of any particle whose mass is m. The re-

doc
solved part of its momentum in the given direction is m -7- .

Hence the resolved part of the momentum of the whole system is

%m -7- . Let (^, y, z) be the co-ordinates of the centre of gravity
€bx/

of the system and i/the whole mass. Then Mx = ^ma;;

Hence the resolved part of the momentum of a system in any \

direction is equal to the whole mass multiplied into the resolved part \.

of the velocity of the centre of gravity.

That is, the linear momentum of a system is the same as if the]

whole mass were collected into its centre of gravity.

In the same way, the resolved part of the effective forces of a

system in any direction is equal to the whole mass multiplied int9

the resolved part of the acceleration of the centre of gravity*

It appears from this proposition that it will be convenient to

take the co-ordinates of the centre of gravity of each rigid body in

the system as three of the co-ordinates of that body. We can then

express in a simple form the resolved part of the effective forces

in any direction.

76. Lastly, let us consider how the equations of motion formed

by taking moments can be simplified by a proper choice of the

three remaining co-ordinates. We must find the moment of the

momentum and the moment of the effective forces about any

straight line.

Let the given straight line be taken as the axis of x, then fol-

lowing the same notation as before, the moment of the momentum
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about the axis of x is

Now this is an expression of the second degree. If, then, we
substitute y = y + y', z = z-^ z',\{q get by Art. 14

<m (^w-'l)-^^^(^l-D'
where M is the mass of the system or body under consideration.

The second term of this expression is the moment about the

axis of X of the momentum of a mass M moving with the centre

of gravity.

The first term is the moment about a straight line parallel to

the axis of x, not of the actual momenta of all the several parti-

cles but of their momenta relatively to that of the centre of gravity.

In the case of any particular body it therefore depends only on the

motion of the' body relatively to its centre of gravity. In finding

its value we shall suppose the centre of gravity reduced to rest by

applying to every particle of the system a velocity equal and oppo-

site to that of the centre of gravity. Hence we infer that

The moment of the momentum of a system about any straight

line is equal to tli£ moment of the momentum, of the whole mass
supposed collected at its centre of gravity and moving with it,

together with the moment of the momentum of the system relative to

its centre of gravity about a straight line drawn parallel to the given

straight line through the centre of gravity.

In the same way, this proposition will be also true if for the
*' momentum " of the system we substitute " effective force."

By taking the axis Ox through the centre of gravity, we see

that the moment of the relative momenta about any straight line

through the centre of gravity is equal to that of the actual

momenta.

It appears from this proposition that it will be convenient to

refer the angular motion of a body to a system of co-ordinate

axes meeting at the centre of gravity. A general expression for

the moment of the effective forces about any straight line through
the centre of gravity cannot be conveniently investigated at this

stage. Different expressions will be found advantageous under
different circumstances. There are three cases to which attention

should be particularly directed : (1) when the body is turning
about an axis fixed in the body and fixed in space

; (2) when the

motion is in two dimensions, and (3) Euler's expression when the

body is turning about a fixed point. These will be found at the

I
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beginnings of the third and fourth chapters and in the fifth chapter
respectively.

77. The quantity ^mix-^-y ~^A expresses the moment of

the momentum about the axis of z. It is then called the angular
momentum of the system about the axis of z. There is another
interpretation which can be given to it. If we transform to polar

co-ordinates, we have

dy dx _ ^dO

''~di~y~dt~'' Tt'

Now \'i^dQ is the elementary area described round the origin

in the time dt by the projection of the particle on the plane of xy.

If twice this polar area be multiplied by the mass of the particle,

it is called the area conserved by the particle in the time dt round
the axis of z. Hence

-^ / dy dx\
2,m [x-r: — V ^n)

[ dt y dt)

is called the area conserved by the system in a unit of time, or

more simply the area conserved.

78. Three Important Propositions. Summing up the

results of the articles from 71 onwards, we see that we have esta-

blished three important propositions.

Since any straight line fixed in space may be taken as an axis

of co-ordinates, the three equations (A) of Art.. 71 may be written

in the typical form.

d /Linear Momentum in any'\ _ /Resolved impressedN

dt \ fixed direction / \ force /

For the same reason, the three equations (B) of the same article

may be written in the typical form

d /Angular Momentum aboutN _ /Moment of im-\

dt\ a fixed straight line )~\ pressed forces /
"

Thirdly, we see by Art. 75, that the typical expression for the

linear momentum may be written

/Linear Momentum in\ _ /Mass x resolved velocity\

V any fixed 'direction / \ of centre of gravity /
*

The corresponding typical expression for the angular momentum
is deferred for the present.
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79. Independence of Translation and Rotation. We
may now enunciate two important propositions, which follow at

once from the preceding results. It will, however, be more useful

to deduce them from first principles.

(1) The motion of the centre of gravity of a system acted on hy

any forces is the same as if all the mass were collected at the centre

of gravity and all the forces were applied at that point parallel to

theirformer directions.

(2) The motion of a body, acted on hy any forces, about its

centre of gravity is the same as if the centre of gravity were fixed

and the same forces acted on the body.

Taking any one of the equations (A) we have

Sm -n = ^mX.
atr

If X, y, z be the co-ordinates of the centre of gravity, then

Ictm = ^mx
;

and the other equations may be treated in a similar manner.

But these are the equations which give the motion of a mass
Sm acted on by forces SwiX, &c. Hence the first principle is

proved.

Taking any one of equations (B) we have

Let x = x-\-x', y = y+y\ z = z-\-z, then by Art. 14 this equa-
tion becomes

_A / , d'^u , drx\ [_ d^ _ d^x\ ^ _ , „ _,
tm{x -^-y j^,)-^l^xJ-.y^,jtm = ^m{xY-yX).

Now the axes of co-ordinates are quite arbitrary, let them bej

so chosen that the centre of gravity is passing through the origin

at the moment under consideration. Then x = 0, y = 0, but]

-^ , -^ are not necessarily zero. The equation then becomes

This equation does not contain the co-ordinates of the centre

of gravity and holds at every separate instant of the motion anc

therefore is always true. But this and the two similar equatior

obtained from the other two equations of (B) are exactly the
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equations of moments we should have had if we had regarded the
centre of gravity as a fixed point and taken it as the origin of
moments.

80. These two important propositions are called respectively

the principles of the conservation of the motions of translation and
rotation. The first was given by Newton in the fourth corollary

to the third law of motion, and was afterwards generalized by
D'Alembert and Montucla. The second is more recent and seems
to have been discovered about the same time by Euler, Bernoulli

and the Chevalier d'Arcy.

Another name has also been given to these results. Together]

they constitute the principle of the independence of the motions of
translation and rotation. The motion of the centre of gravity is

the same as if the whole mass were collected at that point, and is

therefore quite independent of the rotation. The motion round,

the centre of gravity is the same as if that point were fixed, and
|

is therefore independent of the motion of that point.

81. By the first principle the problem of finding the motion

of the centre of gravity of a system, however complex the system

may be, is reduced to the problem of finding the motion of a

single particle. By the second the problem of finding the angular

motion of a free body in space is reduced to that of determining

the motion of that body about a fixed point.

Example of first principle. In using the first principle it

should be noticed that the impressed forces are to be applied at

the centre of gravity parallel to their former directions. Thus, if

a rigid body be moving under the influence of a central force, the

motion of the centre of gravity is not generally the same as if the

whole mass were collected at the centre of gravity and it were

then acted on by the same central force. What the principle

asserts is, that, if the attraction of the central force on each ele-

ment of the body be found, the motion of the centre of gravity is

the same as if these forces were applied at the centre of gravity

parallel to their original directions.

If the impressed forces act always parallel to a fixed straight

line, or if they tend to fixed centres and vary as the distance from

those centres, the magnitude and direction of their resultant are

the same whether we suppose the body collected into its centre of

gravity or not. But in most cases care must be taken to find the

resultant of the impressed forces as they really act on the body

before it has been collected into its centre of gravity.

82. Example of second principle. Let us next consider

an example of the second principle. Suppose the earth to be in

rotation about some axis through its centre of gravity and to be
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acted on by the attractions of the sun and moon. Then we learn,

from the second principle, that if the resultant attraction of these

bodies pass through the centre of gravity of the earth, the rotation

about the axis will not be in any way affected. In whatever way
the centre of gravity of the earth may move in space, the axis of

rotation will have its direction fixed in space and the angular

velocity will be constant. Two important consequences follow

immediately from this result. The centre of gravity of the earth

is known to describe an orbit round the sun, which is very nearly

in one plane, and the changes of the seasons chiefly depend on \

the inclination of the earth's axis to the plane of motion of the

centre of the earth. The permanence of the seasons is therefore

established. Secondly, since the angular velocity is constant, it

follows that the length of the sidereal day is invariable.

Strictly speaking the resultant attraction due to any particle of the sun and

moon does not pass through the centre of gravity of the earth. The reason is that

the earth is not a perfect sphere whose strata of equal density are concentric

spheres. But the ellipticities of these strata are all small and the motion of rotation

of the earth will be but slightly affected. Nevertheless the sun (for instance) will

act with unequal forces on those parts of the earth's equator which are nearer to

it and those more remote. Thus the sun's attraction will tend to turn the earth

about an axis lying in the plane of the equator and which is perpendicular to the

radius vector of the sun. The general effect of this couple on the rotation of the

earth is very remarkable. It will be proved in a later chapter (1) that the period of

rotation of the earth is unaltered, (2) that though the direction of the earth's axis

is no longer fixed in space, yet the axis still preserves, on the whole, the same

inclination to the plane of the earth's motion round the sun. Thus the permanence

of the seasons, as far as these causes are concerned, remains unaffected.

83. General Method of using D'Alembert's Principle.

The general problem in Dynamics which we have to solve may be

stated thus.

Any number of rigid bodies press both against each other and

against fixed points, curves, or surfaces and are acted on by given

forces ; find their motion.

The mode of using D'Alembert's Principle for the solution

may be stated thus.

Let X, y, z be the co-ordinates of the centre of gravity of any
one of these bodies referred to three rectangular axes fixed in

space. Let three other co-ordinates of this body be chosen so

that the three moments of the momentum of the body about

three rectangular axes fixed in direction and meeting at the

centre of gravity may be found conveniently in terms of them.

Let Aj, ^j, Ag be these three moments of the momentum, and let

M be the mass. Then the effective forces of the body are equi-

d^x d*v d*z
valent to the three effective forces M -^r , ^^ -^ , M ,,v and to

at dt* dt

I
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dh rlTi tJh
the three eflfective couples ^ , -^ , -^ . The three effective

at at at

forces act at the centre of gravity parallel to the axes of x, y, z
respectively, and the three couples act round the three axes about
which the moments of the momentum were taken. The effective

forces of all the other bodies of the system may be expressed in a
similar manner.

Then all these effective forces and couples being reversed will

be in equilibrium with the impressed forces. The equations of

equilibrium may then be found by resolving in such directions

and taking moments about such straight lines as may be con-

venient. Instead of reversing the effective forces it is usually

found more convenient to write the impressed and effective forces

on opposite sides of the equations.

Taking each body separately we may thus obtain by three

resolutions and three moments six equations of motion for each

body.

If two rigid bodies press against each other or against a fixed

obstacle there may be one or more unknown reactions. But there

will also be in general as many equations to express the conditions

of contact. The mode of writing down these conditions of contact

will be explained in the chapters which follow.

Thus we shall have as many equations as there are co-ordinates

and reactions. But sometimes by a judicious choice of the direc-

tions in which we resolve, or of the straight lines about which we
take moments, we may (exactly as in Statics) avoid introducing

some of these reactions into the equations. This will reduce the

number of equations which have to be formed. We may also some-

times avoid these reactions by resolving or taking moments for

two of the bodies as if they formed for an instant one single

body.

These differential equations will then have to be solved. The
different methods of proceeding will be explained further on.

Generally we can find one integral by a method called the princi-

ple of Vis Viva. A rule will be given to write down this integral

without previously forming the equations of motion.

We have here limited ourselves to the method of forming the

equations by resolving and taking moments. But we may proceed

otherwise. Thus Lagrange has given a method of writing down
the equations of motion by which, amongst other advantages, the

labour of eliminating the reactions is avoided.

R. D.
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Application of UAlemhert's Principle to impulsive forces.

84. If a force F act on a particle of mass m always in the

same direction, the equation of motion is

dv „

where v is the velocity of the particle at the time t. Let T be the

interval during which the force acts, and let v, v' be the velocities

at the beginning and end of that interval. Then

m{v'-v) = l Fdt.
Jo

Now suppose the force F to increase without limit while the

interval T decreases without limit. Then the integral may have

a finite limit. Let this limit be P. Then the equation becomes

m {v —v) = P.

The velocity in the interval T has increased or decreased from

V to v. Supposing the velocity to have remained finite, let V be

its greatest value during this interval. Then the space described

is less than VT. But in the limit this vanishes. Hence the

particle has not moved during the action of the force F. It has

not had time to move, but its velocity has been changed from

V to v'.

We may consider that a proper measure has been found for a

force when from that measure we can deduce all the effects of the

force. In the case of finite forces we have to determine both the

change of place and the change in the velocity of the particle. It

is therefore necessary to divide the whole time of action into

elementary times and determine the effect of the force during

each of these. But in the case of infinite forces which act for an
indefinitely short time, the change of place is zero, and the change
of velocity is the only element to be determined. It is therefore

more convenient to collect the whole force expended into one
measure. Such a force is called an impulse. It may be defined

as the limit of a force which is infinitely great, but acts only

during an infinitely short time. There are of course no such

forces in nature, but there are forces which are very great, and
act only during a very short time. The blow of a hammer is

a force of this kind. They may be treated as if they were im
pulses, and the results will be more or less correct according t

the magnitude of the force and the shortness of the time of

action. They may also be treated as if they were finite forces,

and the small displacement of the body during the short time of

action of the force may be found.

II
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The quantity P may be taken as the measure of the force.

An impulsive force is measured by the whole momentum generated

by the impulse.

85. In determining the effect of an impulse on a body, the

effect of all finite forces which act on the body at the same time may
be omitted.

For let a finite force / act on a body at the same time as an
impulsive force F. Then as before we have

rT rT

Fdt fdt
Jo , Jo

m m mm'
But in the limit fT vanishes. Similarly the force / may be

omitted in the equation of moments.

86. To obtain tlte general equations of motion of a system

acted on by any number of impulses at once.

Let u, V, w, u', v', w be the velocities of a particle of mass m
parallel to the axes just before and just after the action of the

impulses. Let X\ Y', Z' be the resolved parts of the impulse on

m parallel to the axes.

Taking the same notation as before, we have the equation

Sw -jTi = ^mX,

or integrating

tm{u -u) = tm\'^ Xdt = ^X' (1).
Jo

Similarly we have the equations

tm{v'-v)=%Y' (2),

tm{w'-w)=^Z' (3).

Again the equation

becomes on integration

or taken between limits,

tm[x(v'-v)-y{u-u)]=^X{xY'-yX') (4),

5—2
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and the other two equations become

tm[y{w'-w)-z{v-v)] = t{yZ'-zY') (5),

^m[z {u' — u) — x{w'—w)] =2 [zX — xZ') (6).

In all the following investigations it will be found conveniei

to use accented letters to denote the states of motion after imps

which correspond to those denoted by the same letters unaccented

before the action of the impulse. Since the changes in direction

and magnitude of the velocities of the several particles of the

bodies are the only objects of investigation, it will be more conve-

nient to express the equations of motion in terms of these veloci-

dx du dz
ties, and to avoid the introduction of such symbols as -^ , -^ , -j-.

87. In applying D'Alembert's Principle to impulsive forces the

only change which must be made is in the mode of measuring the

effective forces. If {u, v, w), {u', v', w') be the resolved parts of the

velocity of any particle, just before and just after the impulse, and
if wi be its mass, the effective forces will be measured by m{u —u),
m (v — v), and in {w — w). The quantity mf in Art. 67 is to be
regarded as the measure of the impulsive force which, if the parti-

cle were separated from the rest of the body, would produce these

changes of momentum.

In this case, if we follow the notation of Arts. 75 and 76, the

resolved part of the effective force in the direction of the axis of z

dz .

is the difference of the values of 1m -r just before and just after

the action of the impulses, and this is the same as the difference

dz
of the values of M -y- at the same instants. In the same way the

moment of the effective forces about the axis of z will be the

difference of the values of

^ f dy dx\

just before and just after the action of the impulses.

We may therefore extend the general proposition of Art. 83
impulsive forces in the following manner.

Let (u, V, w), (u, V, w) be the velocities of the centre of gravit

of any rigid body of mass ilf just before and just after the actic

of the impulses resolved parallel to any three fixed rectangul
axes. Let (A,, \, h^, (/i/, A/, h^') be the three moments of tl_
momentum relative to the centre of gravity about three rect- ^
augular axes fixed in direction and meeting at the centre of

'

gravity, the moments being taken just before and just after tli

impulses. Then the effective forces of the body are equivalent

II



r EXAMPLES. 69

the three efifective forces M {u — u), M{v'-v),M{w' -w) actino-

at the centre of gravity parallel to the rectangular axes together
with the three effective couples (A/ - AJ, {k^' -h^), [h^' - k^) about
those axes.

These effective forces and couples being reversed will be in

equilibrium with the impressed forces. The equations of equili-

brium may then be formed acording to the rules of Statics.

Examples.

Ex. 1. Two particles moving in the same plane are projected in parallel but

opposite directions with velocities inversely proportional to their masses. Find the

motion of their centre of gravity.

Ex. 2. A person is placed on a perfectly smooth table, show how he may
get off.

Ex. 3. Explain how a person sitting on a chair, is able to move the chair across

the room by a series of jerks, without touching the ground with his feet.

Ex. 4. A person is placed at one end of a perfectly rough board which rests

on a smooth table. Supposing he walks to the other end of the board, determine

how much the board has moved. If he stepped off the board, show how to deter-

mine its subsequent motion.

Ex. 5. The motion of the centre of gravity of a shell shot from a gun in vacuo

is a parabola, and its motion is unaffected by the bursting of the shell.

Ex. 6. A rod revolving uniformly in a horizontal plane round a pivot at its

extremity suddenly snaps in two : determine the motion of each part.

Ex. 7. A cube slides down a perfectly smooth inclined plane with four of its

edges horizontal. The middle point of the lowest edge comes in contact with

a small fixed obstacle and is reduced to rest. Determine if the cube is also reduced

to rest, and show that the resultant impulsive action along the edge will not in

general act along the inclined plane.

^ Ex. 8. Two persons A and B are situated on a perfectly smooth horizontal

plane at a distance a from each other. A throws a ball to B which reaches B after

a time t. Show that A will begin to slide along the plane with a velocity— where

M is his own mass and m that of the ball. If the plane were perfectly rough,

(explain in general terms the nature of the pressures between A's feet and the

plane which would prevent him from sliding. Would these pressures have a single

resultant ?

-iEx. 9. A cannon rests on an imperfectly rough horizontal plane and is fired

with such a charge that the relative velocity of the ball and cannon at the moment

when the ball leaves the cannon is V. If M be the mass of the cannon, m that of

the ball and /i the coefficient of friction, show that the cannon will recoil a distance

,[-i:f
—

- ) ^— on the plane.
\\M+7nJ 2fig

^
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Ex. 10. A spherical cavity of radius a is cut out of a cubical mass so that the

centre of gravity of the remaining mass is in the vertical through the centre of the

cavity. The cubical mass rests on a perfectly smooth horizontal plane, but the

interior of the cavity is perfectly rough. A sphere of mass m, and radius 6, rolls

down the side of the cavity starting from rest with its centre on a level with the

centre of the cavity. Show that when the sphere next comes to rest, the cubical

mass has moved through a space -^ , where M is the mass of the remaining

portion of the cube. Will the result be the same if the cavity were imperfectly

rough or smooth ?

Ex. 11. Two railway engines drawing the same train are connected by a loose

chain and come several times in succession into coUision with each other; the

leading engine being a little top-heavy and the buffers of both rather low. The

fore-wheels of the first engine are observed to jump up and down. "What dynamical

explanation can be given of this rocking motion ? At what level should the buffers

be placed that it may not occur? Camh. Trans. Vol. vn.

Ex. 12. Sir C. Lyell in his account of the earthquake in Calabria in 1783,

mentions two obehsks each of which was constructed of three great stones laid on the

top of each other. After the earthquake, the pedestal of each obelisk was found to

be in its original place, but the separate stones above were turned partially round

and removed several inches from their position without falling. The shock which

agitated the building was therefore described as having been horizontal and vorticose-

Show that such a displacement would be produced by a simple rectilinear shock,

if the resultant blow on each stone did not pass throiigh its centre of gravity. See

Mallet's Dynamics of Earthquakes.
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MOTION ABOUT A FIXED AXIS.

88. The Fundamental Theorem. A rigid body can turn

freely about an axis fixed in the body and in space, to find the mo-
ment of the effective forces about the axis of rotation.

Let any plane passing through the axis and fixed in space be
taken as a plane of reference, and let 6 be the angle which any
other plane through the axis and fixed in the body makes with
the first plane. Let m be the mass of any element of the body,

r its distance from the axis, let (^ be the angle a plane through the

axis and the element m makes with the plane of reference.

The velocity of the particle m is r -^ in a direction perpendi-

cular to the plane containing the axis and the particle. The
moment of the momentum of this particle about the axis is

clearly mr^ -^ . Hence the moment of the momenta of all the

particles is 2 [mr^ -^j . Since the particles of the body are rigidly

connected with each other, it is obvious that -^ is the same for

dd
every particle, and equal to -7- . Hence the moment of the mo-

JQ

menta of all the particles of the body about the axis is Smr' -^ ,

i. e. the moment of inertia of the body about the axis multiplied

into the angular velocity.

d^6 J fdSV
The accelerations of the particle m are ''-ipr ^^^l "'"(t/t)

perpendicular to, and along the directions in which r is measured,
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the moment of the moving forces of m about the axis is mr* -^ ,

hence the moment of the moving forces of all the particles of the

body about the axis is 2 f wr' -^^ j
. By the same reasoning as

before this is equal to Xmr^ -^ , i. e. the moment of inertia of the

body about the axis into the angular acceleration.

89. To determine the motion of a body about a fixed axis

under the action of anyforces.

By D'Alembert's principle the effective forces when reversed

will be in equilibrium with the impressed forces. To avoid intro-

ducing the unknown reactions at the axis, let us take moments
about the axis.

Firstly, let the forces be impulsive. Let to, m be the angular

velocities of the body just before and just after the action of the

forces. Then, following the notation of the last article,

o)' . %mr^— 6> . Swr' = L,

where L is the moment of the impressed forces about the axis

;

moment of forces about axis
a —a> =

moment of inertia about axis
'

This equation will determine the change in the angular velo-

city produced by the action of the forces.

Secondly, let the forces be finite. Then taking moments abou'

the axis, we have

d^d _ rfloment of forces about axis

df moment of inertia about axis
*

This equation when integrated will give the values of 6 and
dd . '

-^ at any time. Two undetermined constants will make theil

appearance in the course of the solution. These are to be dete:

dd

dt
motion can be found.

90. It appears from this proposition that the motion of a

rigid body about a fixed axis depends on (1) the moment of th<

mined from the given initial values of 6 and -77 . Thus the whoU
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forces about that axis and (2) the moment of inertia of the body
about the axis. Let Mk^ be this moment of inertia, so that k is

the radius of gyration of the body. Then if the whole mass of

the body were collected into a particle and attached to the fixed

axis by a rod without inertia, whose length is the radius of gyra-

tion k, and if this system be acted on by forces having the same
moment as before, and be set in motion with the same initial

d9
values of 6 and -^ , then the whole subsequent angular or gyra-

tory motion of the rod will be the same as that of the body. We
tnay say briefly, that a body turning about a fixed axis is dyna-
mically given, when we know its mass and radius of gyration.

91. Ex. A perfectly rough circular horizontal board is capable of revolving

freely round a vertical axis through its centre. A man whose weight is equal to that

of the board walks on and round it at the edge : when he has completed the circuit

what will be his position in space ?

Let a be the radius of the board, Mk^ its moment of inertia about the vertical

axis. Let w be the angular velocity of the board, w' that of the man about the

vertical axis at any time. And let F be the action between the feet of the man

and the board.

The equation of motion of the board is by Art. 89,

MF^= -Fa (1).
at

The equation of motion of the man is by Art. J9,

^^=^^ »
Eliminating F and integrating, we get

fc2w+ aW=:0,

the constant being zero, because the man and the board start from rest. Let

$, ff be the angles described by the board and man round the vertical axis. Then

« = ^, u' = ^,anAm+ a^d'=0. Hence, when fl'-»=2ir, we have ^=rj-—2 Stt.

dt dt ^-, ,. /
K +a

This gives the angle in space described by the man. If ^^=-2 we have ^=g ir. ^ •'^ ' ^^

Let V be the mean relative velocity with which the man walks along the board.

Then w' - w=- ; . •
. w= - J^,= -i- This gives the mean angular velocity

a k'+o^ 3 a

of the board.
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On the Pendulum.

I

92. A body moves about a fixed horizontal axis acted on by

gravity only, to determine the motion.

Take the vertical plane through the axis as the plane of refer-

ence, and the plane through the axis and the centre of gravity as

the plane fixed in the body. Then the equation of motion is

dj'O _ moment of forces .-

.

d^ moment of inertia

_ Mgh sin

where h is the distance of the centre of gravity from the axis and

Mk^ is the moment of inertia of the body about an axis through

the centre of gravity parallel to the fixed axis. Hence

l? + S^T««-'' =
» .••*^)-

The equation (2) cannot be integrated in finite terms, but if

the oscillations be small, we may reject the cubes and higher

powers of 6 and the equation will become

df^hi' + h'^
"•

/W+h*
Hence the time of a complete oscillation is 27r w —j— . If

h and k be measured in feet and ^ = 321 8, this formula gives the

time in seconds.

The equation of motion of a particle of any mass suspended]
by a string I is

l-+f--°«=o (»)•

which may be deduced from equation (2) by putting k = anc

h = l. Hence the angular motions of the string and the bodj
under the same initial conditions will be identical if

^-'^^
•. (*)•

This length is called the length of the simple equivc

pendulum.
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Centre of Oscillation. Through G, the centre of gravity of
the body, draw a perpendicular to the axis of revolution cutting it

in C. Then C is called the centre of suspension. . Produce GG to

so that 00 = 1. Then is called the cmtre of oscillation. If the

whole mass of the body (or indeed any mass) were collected at the

centre of oscillation and suspended by a thread to the centre of
suspension, its angular motion and time of oscillation would be the

same as that of the body under the same initial circumstances.

The equation (4) may be put under another form. Since
CG = h and OG = l — h, we have

GO. G0 = (rad.)* of gyration about G,

CG . 00 = (rad.)^ of gyration about C,

OG. 00 = (rad.)^ of gyration about 0.

Any of these equations show that if be made the centre of

suspension, the axis being parallel to the axis about which k was
taken, then will be the centre of oscillation. Thus the centres

of oscillation and suspension are convertible and the time of oscilla-

tion about each is the same.

If the time of oscillation be given, I is given and the equa-
tion (4) will give two values of h. Let these values be h^, h^.

Let two cylinders be described with that straight line as axis

about which the radius of gyration k was taken, and let the

radii of these cylinders be h^,\. Then the times of oscillation of

the body about any generating lines of these cylinders are the

same, and are approximately equal to 27r w - •

* The position of the centre of oscillation of a body was first correctly deter-

mined by Huyghens in his Horologium Oscillatorium published at Paris in 1673.

The most important of the theorems given in the text were discovered by him. As

D'Alembert's principle was .not known at that time, Huyghens had to discover some

principle for himself. The hypothesis was, that when several weights are put in

motion by the force of gravity, in whatever manner they act on each other their

centre of gravity cannot be made to mount to a height greater than that from which

it has descended. Huyghens considers that he assumes here only that a heavy body

cannot of itself move upwards. The next step in the argument was, that at any

instant the velocities of the particles are such that, if they were separated from

each other and properly guided, the centre of gravity could be made to mount to

a second position as high as its first position. For if not, consider the particles to

start from their last positions, to describe the same paths reversed, and then again

to be joined together into a pendulum ; the centre of gravity would rise to its first

position ; but if this be higher than the second position, the hypothesis would be

contradicted. This principle gives the same equation which the modem principle

of Vis Viva would give, and the rest of the solution is not of much interest.
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With the same axis describe a third cylinder whose radius

(h — kf
is k. Then l=2k+ -—y— , hence I is always greater than 2k,

and decreases continually as h decreases and approaches the value

k. Thus the length of the equivalent pendulum continually de-

creases as the axis of suspension approaches from without to the

circumference of this third cylinder. When the axis of suspension

is a generating line of the cylinder the length of the equivalent

pendulum is 2k. When the axis of suspension is within the

cylinder and approaching the centre of gravity the length of the

equivalent pendulum continually increases and becomes infinite

when the axis passes through the centre of gravity.

The time of oscillation is therefore least when the axis is a

generating line of the circular cylinder whose radius is k. But the

time about the axis thus found is not an absolute minimum. It

is a minimum for all axes drawn parallel to a given straight line

in the body. To find the axis about which the time is absolutely

a minimum we must find the axis about which k is a. minimum.
Now it is proved in Art. 23, that of all axes through G the

axis about which the moment of inertia is least or greatest is one

of the principal axes. Hence the axis about which the time of

oscillation is a minimum is parallel to that principal axis through

G about which the moment of inertia is least. And if Mk^ be the

moment of inertia about that axis, the axis of suspension is at a
distance k measured in any direction from the principal axis.

^ 93. Ex. 1. Find the time of the small oscillations of a cube (1) when one

Bide is fixed, (2) when a diagonal of one of its faces is fixed ; the axis in both cases

being horizontal. If 2a be a side of the cube, show that the length of the simple

equivalent pendulum is in the first case - »j2a, and in the second case 3 a.
o o

Ex. 2. An elliptic lamina is such that when it swings about one latus rectum

as a horizontal axis, the other latus rectum passes through the centre of oscillation,

prove that the eccentricity is ^.

Ex. 3. A circular arc oscillates about an axis through its middle point perpen-

dicular to the plane of the arc. Prove that the length of the simple equivalent

pendulum is independent of the length of the arc, and is equal to twice the radius.

Ex. 4. The density of a rod varies as the distance from one end, show that the]

axis perpendicular to it about which the time of oscillation is a minimum intersectsi

the rod at either of the two points whose distance from the centre of gravity it|

1 ^
g ^2a, where a is the length of the rod.

Ex. 5. Find what axis in the area of an ellipse must be fixed that the time

a small oscillation may be a minimum. Show that the axis must be parallel to th«

major axis, and must bisect the semi-minor axis.

I
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-^Ex. 6, A uniform stick hangs freely by one end, the other end being close to the
ground. An angular velocity in a vertical plane is then communicated to the stick,

and when it has risen through an angle of 900, the end by which it was hanging is

loosed. What must be the initial angular velocity so that on falling to the ground
it may pitch in an upright position ? Show that the required angular velocity w is

given by w^=.j^ [3 + -^j . wliere 2p is equal to any odd multiple of v and

2a is the length of the rod.

Ex. 7. Two bodies can move freely and independently under the action of

gravity about the same horizontal axis ; their masses are m, m', and the distances of

their centres of gravity from the axis are h, h'. If the lengths of their simple

equivalent pendulums be L, L', prove that when fastened together in the positions

of equilibrium the length of the equivalent pendulum will be —^ .

mh+ m'h'

Ex. 8. When it is required to regulate a clock without stopping the pendulum,

it is usual to add or subtract some small weight from a platform attached to the

pendulum. Show that in order to make a given alteration in the going of the clock

by the addition of the least possible weight, the platform must be placed at a dis-

tance from the point of suspension equal to half the simple equivalent pendulum.

Show also that a slight error in the position of the platform wiU not affect the

weight required to be added.

Ex. 9. A circular table centre is supported by three legs AA', BB', CC which

rest on a perfectly rough horizontal floor, and a heavy particle P is placed on the

table. Suddenly one leg CC gives way, show that the table and the particle will

immediately separate if pc be greater than /c^ ; where p and c are the distances of P
and respectively from the line AB joining the tops of the legs, and k is the radius

of gyration of the table and legs about the line A'B' joining the points where the

legs rest on the floor.

The condition of separation is that the initial normal acceleration of the point

of the table at P should be greater than the normal acceleration of the particle

itself.

Ex. 10. A string without weight is placed round a fixed ellipse whose plane is

vertical, and the two ends are fastened together. The length of the string is greater

than the perimeter of the ellipse. A heavy particle can slide freely on the string

and performs small oscillations under the action of gravity. Prove that the simple

equivalent pendulum is the radius of curvature of the confocal ellipse passing

through the position of equilibrium of the particle.

94. EfiTect of change of temperature. In a clock which
"

is regulated by a pendulum, it is necessary that the time of oscil-

lation should be invariable. As all substances expand or contract

with every alteration of temperature, it is clear that the distance

of the centre of gravity of the pendulum from the axis and the

moment of inertia about that axis will be continually altering.

The length of the simple equivalent pendulum does not however

depend on either of these elements simply, but on their ratio. If

then we can construct a pendulum such that the expansion or

contraction of its different parts does not alter this ratio, the time
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of oscillation will be unaffected by any changes of temperature.

For an account of the various methods of accomplishing this which

have been suggested, we refer the reader to any treatise* on clocks.

We shall here only notice for the sake of illustration one simple

construction, which has been generally used. It was invented by
George Graham about the year 1715.

Some heavy fluid, such as mercury, is enclosed in a cast-iron cylindrical jar

into the top of which an iron rod is screwed. This rod is then suspended in the

usual manner from a fixed point. The downward expansion of the iron on any

increase of temperature tends to lower the centre of oscillation, but the upward

expansion of the mercury tends on the contrary to raise it. It is required to

determine the condition that the position of the centre of oscillation may on the

whole be unaltered.

Let Mk^ be the moment of inertia of the iron jar and rod about the axis of

suspension, c the distance of their common centre of gravity from that axis. Let

I be the length of the pendulum from the point of suspension to the bottom of the

jar, a the internal radius of the jar. Let iiM be the mass of the mercury, A the

height it occupies in the jar.

The moment of inertia of the cylinder of mercury about a straight line through

its centre of gravity perpendicular to its axis is by Art. 18| Ex. 8, nM I rs + T ) •

Hence the moment of inertia of the whole body about the axis of suspension is

and the moment of the whole mass collected at its centre of gravity is

Mn(l-^+Mc.

The length L of the simple equivalent pendulum is the ratio of these two, and on
reduction we have

Let the linear expansion of the substance which forms the rod and jar be
denoted by a and that of mercury by /3 for each degree of the thermometer. If the

thermometer used be Fahrenheit's, we have a= -0000065668, /3
= -00003336, accord-

ing to some experiments of Dulong and Petit. Thus we see that a and j8 are so

small that their squares may be neglected. In calculating the height of the mercury
it must be remembered that the jar expands laterally, and thus the relative vertical

j

expansion of the mercury is 3/3 - 2a, which we shall represent by y.

If then the temperature of every part be increased t", we have a, I, k, c, all
j

increased in the ratio l + a( : 1, while h is increased in the ratio l + yt:l. Since]
L is to be unaltered, we have

/dL _ dL , _ dL , . dL
\da
I
«Aj dL dL , _ dL \ dL ,

^-'"'-di^-'dk^'-i^'J^-'dh^y-^-

• Beid on Clocks; Denison's treatise on Clocks and Clockmaking in Weale'sj
Series, 1867; Captain Rater's treatise on Mechanics in Lardner's Cyclopedia, 1880.1
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But 1/ is a homogeneous fanction of one dimension, hence

dL dL , dL^ dL dL , ,

di''+M^'-dk^ + ^'+dh^=^'

The condition becomes therefore by substitution

a h dZi

a-y~ L dh
*

Let A, B be the numerator and denominator of the expression for L given by
equation (1). Then taking the logarithmic differential

l^dL

L dh A '^ B ~ B V~T~ *'2/

Hence the required condition is

(/3-o) . h c ' \ L 2/*

This calculation is of more theoretical than practical importance, for the nume-

rical values of a and j3 depend a good deal on the purity of the metals and on the

mode in which they have been worked. The adjustment must therefore be finally

made by experiment.

In the investigation we have supposed a and /3 to be absolutely constant, but

this is only a very near approximation. Thus a change of SO** Fah. would alter /5

by less than a fiftieth of its value.

"When the adjustment is made the compensation is not strictly correct, for the

iron jar and mercury have been supposed to be of uniform temperature. Now the

different materials of which the pendulum is composed absorb heat at different

rates and therefore while the temperature is changing there will be some slight

error in the clock.

*^ 95. Buoyancy of Air. Another cause of error in a clock

pendulum is the buoyancy of the air. This produces an upward
force acting at the centre of gravity of the volume of the pendulum
equal to the weight of the air displaced. A very slight modifica-

tion of the fundamental investigation in Art. 92 will enable us

to take this into account. Let V be the volume of the pendulum,
JD the density of the air; h^, h^, the distances of the centres of

gravity of the mass and volume respectively from the axis of

suspension, Mk^ the moment of inertia of the mass about the axis

of suspension. Let us also suppose the pendulum to be sym-
metrical about a plane through the axis and either centre of

gravity.

The equation of motion is then

df

J2/3

Mk'~=-Mgh^sme+VDgh^smO (1).
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By the same reasoning as before we infer that if I be the

length of the equivalent pendulum

?=^i-^.^ (2)-

The density of the air is continually changing, the changes being

indicated by variations in the height of the barometer. Let h be

VD
the value of h^ — h^ -^ for any standard density D. Suppose the

actual density to be i) + hD and let l-\-U be the corresponding

length of the seconds pendulum, then we have by differentiation

^3- = K —rr- > and therefore

I h M D '

T = ..^i ^- ^^^

If T be the time of oscillation, we have

, hT Ihl
and .•.-^ = 27-

96. Ex. 1. If the centres of gravity of the mass and volume were very nearly

coincident and the weight of the air displaced were --jViy ^^ *^^ weight of the

pendulum, show that a rise of one inch in the barometer would cause an error in

the rate of going of the seconds pendulum of nearly one-fifth of a second per day.

This example will enable us to estimate the general effect of a rise of the

barometer on the rate of going of an iron pendulum.

Ex. 2. If we affix to the pendulum rod produced upwards a body of the same

volume as the pendulum bob but of very small weight, so that the centre of gravity

of the volume lies in the axis of suspension, show that the correction for buoyancy

vanishes. This method was suggested in 1871 by Sir George Airy, but he remarks

that this construction would probably be inconvenient in practice.

Ex. 3. If a barometer be attached to the pendulum show that the rise or fall of

the mercury as the density of the air changed could be so arranged as to keep the

time of vibration unaltered. This method was suggested first by Dr Bobinson of

Armagh in 1831 in the fifth volume of the memoirs of the Astronomical Society|

and afterwards by Mr Denison in the Astronomical Notices for Jan. 1873. In th^

Armagh Places of Stars published in 1859, Dr Bobinson describes the difficultie

he found in practice before he was satisfied with the working of the clock.

The theory of this construction is that in differentiating equation (2) we are

suppose k^, &G. variable and I constant. This gives —^—-=S(Mhj)-S{h^VDi

Let r be the rise of the barometer in the glass tube, r' the fall in the cistern, the

/= mr, where m is a known fraction depending on the dimensions of the baromet

Let a and 6 be the depths of the mercury in the tube and cistern below the axis i

suspension, 2c the diameter of the tube, p tlie density of the mercury. Since irc*^
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is the quantity of mercury added to the top of the mercury in the tube and taken
away from the cistern, -we have

These are accurate if the barometer be merely a bent tube so that the cylinders

transferred are similar as well as equal; in this case m=l. If the area of the

cistern be greater than that of the tube we have here neglected the difference of the

moments of inertia of the two cylinders about axes through their centre of gravity.

As r is seldom more than one inch, we may write these

5{ilffc2)= 5rcVr(a2-62),

d{Mhj} = irc^fyr(a-b).

Since D is very small, we may neglect the variations of V\ when multiplied

by D. Thus we have

SD TTcmp a + b-l
D VDK I

r,

where JEf=6-o is the height of the barometer. If the temperature of the air be

D~ Hunaltered we have — = —- and r (1 + m) = 5H. The required condition is therefore

TTcmpH a + b-l ,

It is clearly necessary that a + b>l. The jar of mercury in Graham's mercurial

1 pendulum might be used as the cistern of the barometer, as Mr Denison remarks.

The height of the barometer being 30 inches this would hardly be effective unless

the pendulum was longer than the seconds pendulum, which is about 39 inches.

Prof. Kankine read a paper to the British Association in 1853 in which he

proposed to use a clock with a centrifugal or revolving pendulum, part of which

should consist of a siphon barometer. The rising and falling of the barometer

would affect tlie rate of going of the clock and thence the mean height of the

mercm-ial column during any long period would register itself.

Ex. 4. If the pendulum be supposed to drag a quantity of air with it which

bears a constant ratio to the density D of the surrounding air and adds yD to the

1 moment of inertia of the pendulum without increasing the moving power, show that

1

the change produced in the simple equivalent pendulum by a change of density 5D

is given by dl=y--—- . Show that this might be included in Dr Eobinson's mode

of correcting for buoyancy.

97. Moments of Inertia found by experiment. In many
experimental investigations it is necessary to determine the

moment of inertia of the body experimented on about some
axis. If the body be of regular shape and be so far homogeneous
that the errors thus produced are of the order to be neglected,

we can determine the moment of inertia by calculation. But
sometimes this cannot be done. If we can make the body oscillate

R.D. 6
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under gravity about any axis parallel to the given axis placed

in a horizontal position, we can determine by equation (4) of

Art. 92 the radius of gyration about a parallel axis through the

centre of gravity. This requires however that the distances of

the centre of gravity from the axes should be very accurately

found. Sometimes it is more convenient to attach the body to a

pendulum of known mass whose radius of gyration about a fixed

horizontal axis has been previously found by observing the time

of oscillation. Then by a new determination of the time of

oscillation, the moment of inertia of the compound body, and
therefore of the given body, may be found, the masses being

known.

If the body be a lamina, we may thus find the radii of gyration

about three axes passing through the centre of gravity. By
measuring three lengths along these axes inversely proportional

to these radii of gyration, we have three points on a momental
ellipse at the centre of gravity. The ellipse may then be easily

constructed. The directions of its principal diameters are the

principal axes, and the reciprocals of their lengths represent on
the same scale as before the principal radii of gyration.

If the body be a solid, six observed radii of gyration will de-

termine the principal axes and moments at the centre of gravity.

But in most cases some of the other circumstances of the particular

problem under consideration Will simplify the process.

On the length of the Seconds Pendulum.

98. The oscillations of a rigid body may be used to determine
the numerical value of the accelerating force of gravity. Let r be
the half time of a small oscillation of a body made in vacuo about
a horizontal axis, h the distance of the centre of gravity from the
axis, k the radius of gyration about a parallel axis through the
centre of gravity. Then we have by Art. 92,

k' + h' = \hr' (1),

where X. = —^ so that \ is the length of the simple pendului

whose complete time of oscillation is two seconds.

We might apply this formula to any regular body for whicfr
F and h could be found by calculation. Experiments have thus
been made with a rectangular bar, drawn as a wire and suspended

F 4- h^
from one end. In this case —y— which is the length of the

simple equivalent pendulum is easily seen to be two-thirds of th«

I
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length of the rod. The preceding formula then gives X or g as

soon as the time of oscillation has been observed. By inverting

the rod and taking the mean of the results in each position any
error arising from want of uniformity in density or figure may
be partially obviated. It has, however, been found impracticable

to obtain a rod sufficiently uniform to give results in accordance
with each other.

99. If we make a body oscillate about two parallel axes in

succession not at the same distance from the centre of gravity, we
get two equations similar to (1), viz.

F +r = XAV^J
^'^^

^Between these two we may now eliminate ¥, thus

^—J!L=hr'-h'T" (3).
A/

This equation gives A,. Since F has disappeared, the form and
structure of the body is now a matter of no importance. Let a

body be constructed with two apertures into which knife edges

<;an be fixed. By means of these resting either on a horizontal

plane or in two triangular apertures to prevent slipping, the body
can be made to oscillate through small arcs. The perpendicular

distances h, h', of the centre of gravity from the axes must then be

measured with great care. The formula will then give \.

100. In Capt. Kater's method {Phil. Trans., 1818) the body
has a sliding weight in the form of a ring which can be moved
up and down by means of a screw. The body itself has the

form of a bar and the apertures are so placed that the centre of

gravity lies between them. The ring weight is then moved until

the two times of oscillation are exactly equal. The equation (3)

then becomes
,

(4),

which determines X. The advantage of this construction is that

the position of the centre of gravity, which is very difficult to find

by experiment, is not required. All we want is ^ + A', the exact

distance between the knife edges. The disadvantage is that the

ring weight has to be moved until two times of oscillation, each of

which it is difficult to observe, are made equal.

101. The equation (3) can be written in the form

h^h' r' + r'', h + h' . , ,,.

X 2 ^h-h

^

6—2
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We now see that if the body be so constructed that the times

of oscillation about the two axes of suspension are very nearly

equal r^ — r'^ will be small, and therefore it will be sufficient in

the last term to substitute for h and h' their approximate values.

The position of the centre of gravity is of course to be found as

accurately as possible, but any small error in its position is of

no very great consequence, for these errors are multiplied by the

small quantity t^ — r''\ The advantage of this construction over

Kater's is that the ring weight may be dispensed with and yet

the only element which must be measured with extreme accuracy

is A + h', the distance between the knife edges.

102. In order to measure the distance between the knife

edges, Captain Kater first compared the different standards ol

length then in use, in terms of each of which he expressed the

length of his pendulum. Since then a much more complete com-
parison of these and other standards has been made under the

direction of the Commission appointed for that purpose in 1843.

Phil. Trans. 1857.

Having settled his unit of length, Captain Kater proceeded to

measure the distance between the knife edges by means of micro-

scopes. Two different methods were used, which however cannot

be described here. As an illustration of the extreme care neces-

sary in these measurements, the following fact may be mentioned.

Though the images of the knife edges were always perfectly sharp

and well defined, their distance when seen on a black ground was
'000572 of an inch less than when seen on a white ground. This

difference appeared to be the same whatever the relative illumi-

nation of the object and ground might be so long as the difference

of character was preserved. Three sets of measurements were
taken, two at the beginning of the experiments, and the third after

some time. The object of these last was to ascertain if the knife

edges had suffered from use. The mean results of these three,

differed by less than a ten-thousandth of an inch from each othei

the distance to be measured being 39 "44085 inches.

103. The time of a single vibration cannot be observed di<

rectly, because this would require the fraction of a second of timi

as shown by the clock to be estimated either by the eye or e

The difficulty may be overcome by observing the time, say of

thousand vibrations, and thus the error of the time of a single

bration is divided by a thousand. The labour of so much counting

may however be avoided by the use of "the method of coinci-

dences." The pendulum is placed in front of a clock pendulum
whose time of vibration is slightly different Certain marks made
on the two pendulums are observed by a telescope at the lowest

point of their arcs of vibration. The field of view is limited b;

I
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a diaphragm to a narrow aperture across which the marks are
seen to pass. At each succeeding vibration one pendulum follows
the other more closely, and at last its mark is completely covered
by the other during their passage across the field of view of the
telescope. After a few vibrations it appears again preceding the
other. In the interval from one disappearance to the next, one
pendulum has made, as nearly as possible, one complete oscillation

more than the other. We have therefore to count the number
of vibrations made by either pendulum in the interval. At the
beginning of the counting let one pendulum coincide with the
other as nearly as we can judge. Suppose that after n half vibra-

tions of the clock pendulum the next coincidence had not quite
arrived, but that after n + 1 half vibrations the coincidence had
passed. If the clock pendulum be the slower of the two, the
other must have made w + 2 or w + 3 half vibrations in the in-

terval. Thus the time of one half vibration of the pendulum
71 7h A- \

lies between the fractions and —-r of the period of the
71 + 2 w + 3

clock vibration. Taking either of these estimates as the real

time of a half vibration of the pendulum the error is less than the

2
fraction -. ^r—. —

, of the time of a half vibration of the clock
{n + 2) (n + 3)

pendulum. It appears from this that the error varies nearly in-

versely as the square of the number of vibrations between two
coincidences. In this manner 530 half-vibrations of a clock

pendulum, each equal to a second, were found to correspond to 532
of Captain Kater's pendulum. The error of this estimate is so

small that in twenty-four hours it would accumulate only to about

three-fifths of a second. The ratio of the times of vibration of the

pendulum and the clock pendulum may thus be calculated with

extreme accuracy. The rate of going of the clock must then

be found by astronomical means.

The reader should notice the resemblance between this process

of comparing two clocks with the use of the vernier in comparing

lengths. Of course there are differences, because the vernier is

applied to space, and we have here to do with time. But the

general principle is the same.

104. The time of vibration thus obtained will require several

corrections which are called " reductions." For instance, if the

oscillation be not so small that we can put sin ^ = ^ in Art. 92, we
must make a reduction to infinitely small arcs. The general

method of effecting this will be considered in the chapter on Small

Oscillations. Another reduction is necessary if we wish to reduce

the result to what it would have been at the level of the sea.

The attraction of the intervening land may be allowed for by

Dr Young's rule {Phil. Trans. 1819). We may thus obtain the
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force of gravity at the level of the sea, supposing all the land

above this level were cut off and the sea constrained to keep its

present level. As the level of the sea is altered by the attraction

of the land, further corrections are still necessary if we wish to re-

duce the result to the surface of that spheroid which most nearly

'

represents the earth. See Camb. Phil. Trans. Vol. x.

Mr Baily gives as the length of the pendulum vibrating in half

time a mean solar second in the open air in the latitude of

London 39133 inches, and the length of a similar pendulum
vibrating sidereal seconds 38*919 inches.

105. Coxreetion for Resistance of the Air. The observations mnst be m
in the air. To correct for this we have to make a reduction to a vacuum. This

reduction consists of three parts : (1) The correction for buoyancy, (2) Du Buat's

correction for the air dragged along by the pendulum, (3) The resistance of the air.

Let V be the volume of the pendulum which may be found by measuring the

dimensions of the body. As the "reduction to a vacuum" is only a correction, any

small unavoidable errors in calculating the dimensions will produce an effect only

of the second order on the value of X. Let p be the density of the air when the

body is oscillating about one knife edge, p' the density when oscillating about the

other. If the observation be made within an hour or two hours, we may put p — p'.

The effect of buoyancy is allowed for by supposing a force Vpg to act upwards at

the centre of gravity of the volume of the body. If the body be made as nearly as

possible symmetrical about the two knife edges this centre of gravity wiE be haii^

way between the knife edges.

Du Buat discovered by experiment that a pendulum drags with it to and fro

certain mass of air which increases the inertia of the body without adding to thj

moving force of gravity. This result has been confirmed by theory. The masi

dragged bears to the mass of air displaced by the body a ratio which depends on thl

external shape of the body. Let us represent it by /iVp. If the body be symmetri

cal about the knife edges, so that the external shape is the same whichever edge

made the axis of suspension, p. wiU be the same for each oscillation. Since thii

mass is to be collected at the centre of gravity of the volume, we must add to thi

ft* of equation (1) in Art. 92, and therefore also in Art. 98, the term - ^ ( -^— ) ,

Taking these two corrections the equation (1) of Art. 98 will now become

where m is the mass of the pendulum. Similarly for the oscillation about the othfl

knife edge,

out the two k

ia,m

We must eliminate ft" as before. If the observations about the two knife

edges succeed each other at a short interval we may put p=p', and then Du Buat\
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correction will disappear. This is of course a very great advantage. We then have*

h+ h' t^+ t"' , h+h'

-4^-?i:<"--(-S).\ 2

the last term being very small because t and t' are nearly equal.

deThe resistance of the air vdll be some function of the angular velocity — of the

pendulum. Since the angular velocity is very small we may expand this function
and take only the first power. Supposing Maclaurin's theorem not to fail, and that
no coefficient of a higher power than the first is very great, this gives a resistance

proportional to -r- . The equation of motion wiU therefore take the form

^^3
+71 ^--2/-,

n—
where — is the time of a complete oscillation in a vacuum and the term on the

n

right-hand side is that due to the resistance of the air. The discussion of this

equation wiU be found in the chapter on Small Oscillations.

106. Construction of a pendulum. In constructing a

reversible pendulum to measure the force of gravity, the following

are points of importance.

1. The axes of suspension, or knife edges, must not be at the

same distance from the centre of gravity of the mass. They
should be parallel to each other.

2. The times of oscillation about the two knife edges should

be nearly equal.

3. The external form of the body must be symmetrical, and
the same about the two axes of suspension.

4. The pendulum must be of such a regular shape that the

dimensions of all the parts can be readily calculated.

These conditions are satisfied if the pendulum be of a rect-

angular shape with two cylinders . placed one at each end. The
external forms of these cylinders are to be equal and similar, but

one is to be solid and the other hollow, and such that by calcula-

tion of moments of inertia the distance between the knife edges is

to be as nearly as possible equal to the length of the simple equi-

valent pendulum.

5. The pendulum should be made, as far as possible, of one

metal, so that as the temperature changes it may be always similar

to itself. In this case since the times of oscillations of similar

bodies vary as the square root of their linear dimensions, it is

* This formula was mentioned to the author as the one used in the late experi-

ments by Capt. Heaviside to determine the length of the seconds pendulum.
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easy to reduce the observed time of oscillation to a standard tem-
perature. The knife edges however must be made of some strong

substance not likely to be easily injured.

107. Ex. 1. If the knife edges be not perfectly sharp, let r be the difference of

their radii of curvature, show that

very nearly when the pendulum vibrates in vacuo. It appears that the correction

vanishes if the knife edges be only equally sharp. By interchanging the knife edges

we have the same equation with the sign of r changed. By making a few observa-

tions we may thus determine r. A proposition similar to this has been ascribed to

Laplace by Dr Young.

Let p, p' be the radii of curvature of the knife edges. Then by taking moments
about the instantaneous axis we may show (as in Art. 98) that k^ + h^=\ (h + p) t'\

Since p is small we may write this in the form A;* + ^i^ - ( ft"+ ^2) ^ = Xhr^. The times

of vibration t, t' are nearly equal, hence by Art. 92 we have k*=hh' very nearly.

Substituting this value of k in the small terms we get

k^ + h'^-(h + h')p=\hT^

There is a similar equation for the pendulum when it vibrates about the other knife

edge, which may be obtained from this, by interchanging h, h' and r, r'. Eliminat-

ing k^ as in Art. 99, and remembering that r= p'-p, we obtain the result to be

proved.

Ex. 2. A heavy spherical ball is suspended successively by a very fine wire

from two points of support A and B whose vertical distance b has been carefully

measured, thus forming two pendulums. The lowest point of the ball is, on each

suspension, made to be as exactly as possible on the same level, which level is

approximately at depths a and a' below A and B respectively. If r be the radius of

the ball, which is small compared with a or a', and I, I' the lengths of the simple

l-V 2 r"
equivalent pendulums, prove that —r— = 1 - 7; -, r-n—r very nearly. By count-

b 5 {a-T)(a -r)

ing the number of oscillations performed in a given time by each pendulum, show how

to find the ratio j, . Thence show how to find g and point out which lengths must

be most carefully measured and which need only be approximately found, so as to

render this method effective. This method is mentioned in Grant's History of

Physical Astronomy, page 155, as having been used by Bessel.

108. A standard of Length. The length of the seconds!

pendulum has been used as a national standard of length. By anj

Act of Parliament passed in 1824, it was declared that the distance

between the centres of the two points in the gold studs in the

straight brass rod then in the custody of the clerk of the House oi

Commons, whereon the words and figures " standard yard, 1760 '^

were engraved, shall be the original and genuine standard of lengtl

called a yard, the brass being at the temperature of 62° Fah. Anc

i
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as it was expedient that the said standard yard if injured should be
restored of the same length by reference to some invariable natural
standard, it was enacted, that the new standard yard should be of
such length that the pendulum, vibrating seconds of mean time in
the latitude of London in a vacuum at the level of the sea, should
be 39-1393 inches.

On Oct. 16, 1834, occurred the fire at the Houses of Parlia-
ment, in which the standards were destroyed. The bar of 1760
was recovered, but one of its gold pins bearing a point was melted
out and the bar was otherwise injured.

In 1838 a commission was appointed to report to the Govern-
ment on the course best to be pursued under the peculiar circum-
stances of the case.

In 1841 the commission reported that they were of opinion
that the definition by which the standard yard is declared to be
a certain brass rod is the best which it is possible to adopt. With
respect to the provision for restoration they did not recommend
a reference to the length of the seconds pendulum. " Since the

passing of the act of 1824 it has been ascertained that several

elements of reduction of the pendulum experiments therein re-

ferred to are doubtful or erroneous : thus it was shown by Dr
Young, Phil. Trans. 1819, that the reduction to the level of the

sea was doubtful; by Bessel, Astron. Nachr. No. 128, and by
Sabine, Phil. Trans. 1829, that the reduction for the weight of air

was erroneous; by Baily, Phil. Trans. 1832, that the specific

gravity of the pendulum was erroneously estimated and that the

faults of the agate planes introduced some elements of doubt; by
Kater, Phil. Trans. 1830, and by Baily, Astron. Soc. Memoirs,

Vol. IX., that very sensible errors were introduced in the operation

of comparing the length of the pendulum with Shuckburgh's scale

used as a representative of the legal standard. It is evident,

therefore, that the course prescribed by the act would not neces-

sarily reproduce the length of the original yard."

The commission stated that there were several measures

which had been formerly accurately compared with the original

standard yard, and by the use of these the length of the original

yard could be determined without sensible error.

In 1843 another commission was appointed to compare all the

existing measures and construct from them a new Parliamentary

standard. Unexpected difficulties occurred in the course of the

comparison, which cannot be described here. A full account of

the proceedings of the commission will be found in a paper

contributed by Sir G. Airy to the Royal Society in 1857.
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Oscillation of a Watch Balance.

109. A rod RGB can turn freely about its centre of gravity

C which is fixed, and is acted on by a very fine spiral spring CPB.
The spring has one end G fixed in position in such a manner that

the tangent at C is also fixed, and has the other end B attached

to the rod so that the tangent at B makes a constant angle with

the rod. The rod being turned through any angle, it is required

to find the time of oscillation. This is the construction used

in watches, just as the pendulum is used in clocks, to regulate

the motion.

Let Gx be the position of the rod when in equilibrium, and
let 6 be the angle the rod makes with Gx at any time t, M^ the

moment of inertia of the rod about G. Let p be the radius of

curvature at any point P of the spring, p^ the value of p when in

equilibrium. Let {cc, y) be the co-ordinates of P referred to C as

origin and Gx as axis of x. Let us consider the forces which act

on the rod and the portion BP of the spring. The forces on the

rod are X, Y the resolved parts of the reaction at C parallel to the

axes of co-ordinates, and the reversed effective forces which are

equivalent to a couple Mk^ -^ . The forces on the spring are, the

reversed effective forces which are so small that they may be

neglected, and the resultant action across the section of the spring

at P. This resultant action is produced by the tensions of the

innumerable fibres which make up the spring, and these are

equivalent to a force at P and a couple. When an elastic spring

is bent so that its curvature is changed, it is proved both by
experiment and theory that this couple is proportional to the

change of curvature at P. We may therefore represent it by

Ey j , where E depends only on the material of which the

spring is made and on the form of its section.

Taking moments about P to avoid introducing the unknown
force at P, we have

df \P pj ^
jj
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This equation is trae whatever point P may be chosen. Con-
sidering the left side constant at any moment and {cc, y) variable,
this becomes the intrinsic equation to the form of the sprino-.

Let BP = s, multiply this equation by ds and integrate along
the whole length I of the spiral spring, we have

ds .

Now — is the angle between two consecutive normals, hence
P

[ds
I
— is the angle between the extreme normals. Now at Ji- the

^ P
normal to the spring is fixed throughout the motion, therefore

11 1 is the angle between the normals at B in the two
^\P. Pol .

positions in which 6 = 6 and ^ = 0. But since the normal at B
makes a constant angle with the rod, this angle is the angle 6
which the rod makes with its position of equilibrium. Also if

X, y be the co-ordinates of the centre of gravity of the spring at

the time t, we have lxds = xl, \yds = yl. Hence the equation of

motion becomes

M¥^ = -~6-\-Yx-Xy.

Lefr us suppose that in the position of equilibrium there is no
pressure on the axis G, then X and Fwill, throughout the motion,

be small quantities of the order 6. Let us also suppose that the

fulcrum G is placed over the centre of gravity of the spring when
at rest. Then if the number of spiral turns of the spring be
numerous and if each turn be nearly circular, the centre of gravity

will never deviate far from G. So that the terms Yx and Xy are

each the product of two small quantities, and are therefore at least

of the second order. Neglecting these terms we have

^^ df~ r'

IMWl
Hence the time of oscillation is 27r f^ —^ .

It appears that to a first approximation the time of oscillation

is independent of the form of the spring in equilibrium, and

depends only on its length and on the form of its section.

This brief discussion of the motion of a watch balance is taken

from a memoir presented to the Academy of Sciences. The



92 MOTION ABOUT A FIXED AXIS.

reader is referred to an article in Liouville's Journal, 1860, for a

further investigation of the conditions necessary for isochronism

and for a determination of the best forms for the spring.

Pressures on the fixed axis.

110. A body moves about a fixed axis under the action of any

forces, to find the pressures on the axis.

Firstly. Suppose the body and the forces to be symmetrical

about the plane through the centre of gravity perpendicular to

the axis. Then it is evident that the pressures on the axis are

reducible to a single force at G the centre of suspension.

Let F, G be the actions of the point of support on the body
resolved along and perpendicular to CO, where is the centre

of gravity. Let X, Y be the sum of the resolved parts of the

impressed forces in the same directions, and L their moment round

G. Let CO =h and ^ = angle which CO makes with any straight

line fixed in space.

Taking moments about G, we have

^=--^—
(1)

The motion of the centre of gravity is the same as if all the
forces acted at that point. Now it describes a circle round C;
hence, taking the tangential and normal resolutions, we have

^de = -M- (2).

rf^\» X-{-F-"© = M (3).

J2Q JQ

Equation (1) gives the values of -j^ and -7- , and then the

pressures may be found by equations (2) and (3).
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If the only force acting on the body be that of gravity, let

be measured from the vertical. We have

X= Mgcose, Y=-Mgsm0, L = -Mghsmd;

'df^-WTh^''''^ (^)'

integrating, we have

If the angular velocity of the body be fl when CO is horizontal,

we have (o = D, when cos^=0. We find C=il^ Substituting
these values in (2) and (3) we get

G . . k'
iTr
= a sm a ^5—r

»

M ^
k' + h\

where is the angle the perpendicular drawn from the centre of

gravity of the body on the axis makes with the vertical measured
downwards*.

111. In many problems we require the vertical and horizontal components of

the pressure, and more particularly the positions of the body in which either of

these components changes sign. If, for instance, the body were a wedge supported

by its edge on a perfectly rough horizontal table it may be regarded as turning

round a horizontal axis. Biat the table can only exert an upward vertical pressure

on the body, if then the vertical pressure changes sign as the body moves, the

wedge will leave the table and the whole motion will be different.

Let Q be the vertical pressure on the body measured upwards when positive,

and P the horizontal pressure measured to the left when the centre of gravity is on

the right hand side of the vertical plane through the axis. For the sake of brevity

k^ + Zh^ k^
^®* ""^'W+W '

^""^ *=^ ftM^- ^^^° "^^ ^""^

-^= a cos2 ^+ 6 sin^ ^ + 02 /i COS ^1

~={a-b)sm0coad+a^hBme\

* Let jR be the resultant of j^+^^J^ ^^^
j|>.

and let a=g j^^^j^i ''=^
k^+ h^'

then—^ + 5^—^ = — . Construct an ellipse with C for centre and axes equal

to a and' 6 measured along and perpendicular to CO. Then the resultant pressure

varies as the diameter along which it acts. And the direction may be found thus

;

let the auxiliary circle cut the vertical in V, and let the perpendicular from V on

CO cut the eUipse in R. Then CB is the direction of the pressure.
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As the expression for the vertical pressure is not altered by changing the sign of

d, we need only consider its changes of sign as the centre of gravity moves, say,

upwards. Similar changes will occur during the descent of the centre of gravity.

We see also that the vertical pressure is always upwards when the centre of

gravity of the body is below the horizontal plane through the axis. Consider then

the two extreme positions in which the centre of gravity lies, (1) in the horizontal

plane through the axis, and (2) that in which it is vertically over the axis.

In these two positions Q has opposite signs if fi2/i>a and the intervening

vanishing points are given by a quadratic equation. Hence we infer that as the

centre of gravity moves from one position to the other, the vertical pressure will

vanish once and change sign if il'^h>a. If this inequality does not hold the

vertical pressure wiU be directed upwards in both the extreme positions. To

determine if it can vanish for any intervening position of the body we must

ascertain if the minimum value of Q is positive or negative. By differentiation we
— O^ft

find Q is least when 003^=277

—

jti and thence by substitution we find the least
2\a — b)

value of QioheM{h-{a- b) cos^ 0}.

If Cfh be less than 2(a-h) and greater than 2jh(a- h), this value of cos 6 will

be possible and the minimum value of Q will be negative. The result is, if

both these conditions are satisfied as well as ifh<a the vertical pressure will

vanish and change sign twice as the body moves from one extreme position to the

other. But if either condition fail, the vertical pressure will not vanish between

the limits. To find the exact positions at which the pressure vanishes, we have

to solve the quadratic equation formed by equating Q to zero. We must also

remember that the conditions of the question may exclude one or both of these

positions. Thus we may show from equation (5) that unless tl^h exceed §(0-6),

the body cannot go all round. Or again the body may be projected upwards at

such an inclination to the vertical that both the roots of the quadratic may be

excluded from the arc of oscillation. In such a case the vertical pressure will of

course keep one sign during the ascent.

The horizontal pressure vanishes when tf=0 or t, and when cos0= ;- . If

this value of cos 6 be greater than unity, the horizontal pressure vanishes and

changes its direction only when the centre of gravity is vertically over or under

the axis. If this value of cos^ be numerically less than unity, the pressure

vanishes and changes signs in two more positions, which both occur when the centre

of gravity is above the axis and at equal heights.

112. Secondly. Suppose either the body or the forces not to

be symmetrical.

Let the fixed axis be taken as the axis of z with any origin

and plane of xz. These we shall afterwards so choose as to sim-
plify our process as much as possible. Let x, y, z be the co-ordi-

nates of the centre of gravity at the time t. Let a> be the angular

velocity of the body, /the angular acceleration, so that/= -j- .
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Now every element m of the body describes a circle about the
axis, hence its accelerations along and perpendicular to the radius

vector r from the axis are — wV and fr. Let 9 be the angle
which r makes with the plane of xz at any time, then from the
resolution of forces it is clear that

-772 = — «V cos 6 —fr sin ^ = — m^x—fy,

similarly j^ = ~ ^V +/^-

These equations may also be obtained by differentiating the

equations x=r cos 6, y = r sin 6 twice, remembering that r is

constant.

Conceive the body to be fixed to the axis at two points, distant

a and a from the origin, and let the reactions of the points on
the body resolved parallel to the axes be respectively F, 0, H',

F', G', H '. The equations of motion of Art. 71 then give

^mX+F-^F'==^m^ = tm{-ay''x-fy)
df

d'y

-ai'Mx-fMy (1),

t'mY+G + 0' = ^mJi^^=^m{-<o^y+fx)

= -ai'My+fMx..

at

.(2),

.(3).

Taking moments about the axes, we have

= (o^^myz —flmxz (4)

:
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by merely introducing z into the results in (2),

2m (2Z- wZ) + Fa +F'a' =Xm(z^-x^)

= — (o^Smxz —f^myz (5),

lm{xY-yX) =^m(x^-y^)==tmr^ .^
= Mk'\f , (6).

Equation (6) serves to determine / and o>, and equations (1)

(2), (4), (5) then determine F, G, F' , G'\ H and H' are indeter-

minate, but their sum is given by equation (3).

Looking at these equations, we see that they would be greatly

simplified in two cases.

Firstly, if the axis of 2; be a principal axis at the origin,

liToxz = 0, %myz = 0,

and the calculation of the right-hand sides of equations (4) and

(5) would only be so much superfluous labour. Hence, in at-

tempting a problem of this kind, we should, when possible, so

choose the origin that the axis of revolution is a principal axis

of the body at that point.

Secondly, except the determination of / and a> by integrating

equation (6), the whole process is merely an algebraic substitution

of / and CO in the remaining equations. Hence our residts will

still be correct if we choose the plane of xz to contain the centre

of gravity at the moment under consideration ; this will make
^ = 0, and thus equations (1) and (2) will be simplified.

113. Impulsive forces. If the forces which act on the body
be impulsive, the equations will require some alterations.

Let ft), ft)' be the angular velocities of the body just before and
just after the action of the impulses. In the case in which the

body and forces are symmetrical, the equations (1), (2), (3) of
Art. 110 become respectively

'"'-" = Mik'+lf) •. W'

A (»'-<.) = I±^ (2),

0-^^- •
C-^).

where all the letters have the same meaning as before, except
that F, G, X, Y are now impulsive instead of finite forces.
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Let lis nexTconsider the case in which the forces on the body
are not symmetrical. Let u, v, w, u\ v', w be the velocities

resolved parallel to the axes of any element m whose co-ordinates
are x, y, z. Then u = -yw, u^-y(o, v = X(o, v=x(o', and
w, tv' are both zero. The several equations of Art. 112 will then
be replaced by the following

:

IX + F+ F' ='Zm{u ~ u) = - Xmy (w' - a>)

= -My{co'-<o) (1),

X F+ (?+ 6^'= tm («'- v) = tmx («' - «)

= Mx{o} -<o) (2),

^Z+H+H' = (3),

^{yZ-2Y)-Ga-G'a' = 'Zm{y{w'-w)-z{v'-v)]

= — Xmjcz . {(o — (o) (4),

2 [zX - xZ) +i^a + Fa = Im [z {u' -u)-x (w- w)]

= — "^myz . (<a' -co) ....(5),

"ZixY-yX) =^tm{x' + f).{(o'-(o) (6).

These six equations are sufficient to determine «', F, F',

G, G' and the sum H+ H' of the two pressures along the axis.

These equations admit of simplification when the origin can
be so chosen that the axis of rotation is a principal axis at that

point. In this case the right-hand sides of equations (4) and (5)

vanish. Also if the plane of xz be chosen to pass through the

centre of gravity of the body, we have ^ = 0, and the right-hand

side of equation (1) vanishes.

114, Ex. A door is suspended by two hinges from a fixed axis making an angle

a with the vertical. Find the motion and pressures on tJie hinges.

Since the fixed axis is evidently a principal axis at the middle point, we shall

take this point for origin. Also we shall take the plane of xz so that it contains

the centre of gravity of the door at the moment under consideration.

The only force acting on the door is gravity, which may be supposed to act at

the centre of gravity. We must first resolve this parallel to the axes. Let <p be

the angle the plane of the door makes with a vertical plane through the axis of

suspension. If we draw a plane zON such that its trace ON on the plane of xOij

makes an angle <p with the axis of x, this wiU be the vertical plane through the

axis; and if we draw OF in this plane making zOV=a, OV will be vertical.

Hence the resolved parts of gravity are

X= <7sinacos<^, r=(7sinasin^, Z= -gcosa.

R. D. 7
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Since the resolved parts of the effective forces are the same as if the whole mass

were collected at the centre of gravity, the six equations of motion are

JI/(7 8inacos^+ F+i^'= -w^Mx (1),

J/(7 sin a sin ^+ G + G'=/il/x (2),

- Jlf(7cosa + H'+H'=0 (3),

-Ga+G'a=rO (4),

ilf(;cosax + Fa-F'a=0 (5),

because the fixed axis is a principal axis at the origin,

- Mg sin a sin ^ .x^^Mk'^ (6).

Integrating the last equation, we have

C+ 2g sin a cos (px= k'^ofl.

Suppose the door to be initially placed at rest, with its plane making an angle /3

with the vertical plane through the axis ; then when 0=j3, w=0 ; hence

k'^oP— 2gx sin a (cos - cos /3)

)

and k'Y= - ^ sin a sin ^ . X )

By substitution in the first four equations F, F', G, G\ may be found.

115. Dynamical and geometrical similarity. It should

be noticed that these equations do not depend on the form of the

body, but only on its moments and products of inertia. We may
therefore replace the body by any equimomental body that may be
convenient for our purpose.

This consideration will often enable us to reduce the compli-

cated forms of Art. 112 to the simpler ones given in Art. 110.

For though the body may not be symmetrical about a plane

through its centre of gravity perpendicular to the axis of sus-

pension, yet if the momental ellipsoid at the centre of gravity be
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symmetrical about this plane we may treat the body as if it were
really symmetrical. Such a body may be said to be Dynamically
Symmetrical. If at the same time the forces be symmetrical
about the same plane, and this will always be the case if the axis

of suspension be horizontal and gravity be the only force

acting, we know that the pressures on the axis must certainly
reduce to a single pressure, which may be found by Art. 110.

116. Ex. 1. A uniform heavy lamina in the form of a sector of a circle is

suspended by a horizontal axis parallel to the radius -which bisects the arc, and
oscillates under the action of gravity. Show that the pressures on the axis are

equivalent to a single force, and find its magnitude,

Ex. 2. An equilateral triangle oscillates about any horizontal axis fcituated in

its own plane, show that the pressures are equivalent to a single force and find its

magnitude.

117. Permanent axes of Rotation. If a body be set in

rotation about any axis which is a principal axis at some point

in its length, and if there be no impressed forces acting on the

body, it follows at once from these conditions that the pressures

on the axis are equivalent to a single resultant force acting at 0.

Hence if be fixed in space, the body will continue to rotate

about that axis as if it_also were fixed in space. Such an axis is

called a permanent a-xis of rotation at the point 0.

If the body be entirely fyee and yet turning about an axis

of rotation which does not alter its position in space, we may
suppose any point we please in the axis to be fixed. In this case

the axis must be a principal axis at every point of its length.

It must therefore by Art. 49 pass through the centre of gravity.

The existence of principal axes was first established by Segner
in the work Specimen Theorice Turhinum. His course of in-

vestigation is the opposite of that pursued in this treatise. He
defines a principal axis to be such that when a body revolves

^ound it the forces arising from the rotation have no tendency

to alter the position of the axis. From this djmamical definition

he deduces the geometrical properties of thes*^ axes. The reader

may consult Prof. Cajley's report to the British Association on the

special problems of Dynamics, 1862, and Bossut, Histoire des

Mathematiques, Tome ii.

118, Suppose the body to start from rest and to be acted on

by a couple, let us discover the necessary conditions that the

pressures on the fixed axis may be reduced to a single resultant

pressure. Supposing such a single resultant pressure to exist, we
can take as origin that point of the axis at which it is intersected

by the single resultant. Then the moments of the two pressures

7—2
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on the axis of rotation about the co-ordinate axes will vanish.

Hence since &> = the equations (4), (5), and (6) of Art. 112 become

where we have written L, M,N for the three moments 2w {yZ— zY),

&c. of the impressed forces about the co-ordinate axes.

The plane of the couple whose resolved parts about the axes

are L, M, N, is known by Statics to be

LX + MF-hNZ=0,
or in our case,

-ImxzX -tmyzY+3Ik''Z=0 (1).

Let the momental ellipsoid at the fixed point be constructed,

and let its equation be

AX^ + BY'+CZ'-2DYZ-2EZX-2FX7= €\

The equation to the diametral plane of the axis of ^is

-EX-DY+CZ=0 (2).

Comparing (1) and (2) we see that the plane of the resultant

couple must be the diametral plane of the axis of revolution.

Since the pressures on the axis are equivalent to a single

resultant force acting at some point of the axis, we may suppose

this point alone to be fixed and the axis of rotation to be other-

wise free. Jf then a body at rest with one point fixed be acted on

by any couple, it will begin to rotate about the diametral line of
the plane of the couple with regard to the momental ellipsoid at

the fi^ed point.

Thus the body will l>egin to rotate about a perpendicular to

the plane of the couple only when the plane of the couple is

parallel to a principal plane of the body at the fixed point.

If the acting couple be an impulsive couple, the equations of

motion, by Art. 113, will be the same as those obtained above when
o) is put zero and ay' written for /. Hence the same conclusion

will follow.

The body will not in general continue to rotate about the dia-

metral line.

119. Ex. 1. If a body at rest have one point fixed and be acted on by any ^

couple whose axis is a radius vector OP of the ellipsoid of gyration at 0, the body

will begin to turn about a perpendicular from on the tangent plane at P.

Ex. 2. A solid homogeneous ellipsoid is fixed at its centre, and is acted on by a
couple iu a plane whose dii-ection-cosines referred to the principal diameters are

(/, m, n). Prove that the direction-cosines of the initial axis of rotation are pro-

portional to ——5 , — and ,—77,

.
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Ex. 3. Any plane section being taken of the momental ellipsoid of a body at a

fixed point, the body may be made to rotate about either of the principal diameters

of this section by the application of a couple of the proper magnitude whose axis is

the other principal diameter.

For assume the body to be turning uniformly about the axis of z. Then the

couples which must act on the body to produce this motion are L= (J^'Zm]iz,

M= - (i^'Emxz, N=0. Then by taking the axis of x such that Smxz = we see that

the axis of the couple must be the axis of x and the magnitude of the couple will

be L=(a^'Lmyz.

Ex. 4. A body having one point fixed in space is made to rotate about any

proposed straight line by the application of the proper couple. The position of the

axis of rotation when the magnitude of the couple is a maximum, has been called

an axis of maximum reluctance. Show that there are six axes of maximum
reluctance, two in each principal plane, each two bisecting the angles between the

principal axes in the plane in which they are.

Let the axes of reference be the principal axes of the body at the fixed point,

let [I, VI, n) be the direction-cosines of the axis of rotation, (X, fi, r) those of the axis

of the couple G. Then by the last question and the fifth and sixth examples of

Art. 33, we have
\ _ /t _ »>

(B

-

C) mn ~ {C-A)nl~ (A-B)lm'

G*= (4 - J5)«Pm2 ^^B- C)2m2„2 + (c _ A)H*P.

We have then to make G a maximum by variation of {Imn) subject to the con-

dition i*+m*+ n^=l. The positions of these axes were first investigated by

Mr Walton in the Quarterly Journal of Mathematics, 1865.

The Centre of Percussion.

120. When the fixed axis is given and the body can be so

struck that there is no impulsive pressure on the axis, any point

in the line of action of the force is called a centre of percussion.

When the line of action of the blow is given, the axis about
which the body begins to turn is called the aa;is of spontaneous

rotation. It obviously coincides with the position of the fixed

axis in the first case.

Prop. A body is capable of turning freely about a fixed

cbxis. To determine the conditions that there shall be a centre of
percussion and to find its position.

Take the fixed axis as the axis of z, and let the plane of xz

pass through the centre of gravity of the body. Let X, F, Z be

the resolved parts of the impulse, and let ^, t], ^ be the co-ordi-

nates of any point in its line of action. Let Mk"^ be the moment
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of inertia of the body about the fixed axis. Then since ^ = 0, the

equations of motion are, by Art. 113,

Y=Mx{co'-a>)\ (1),

Z=0 J

r)Z— ^Y= — {(o — a>) Smxz\

^X-^Z = -{<o'-(o)tmyz\ (2).

fr-97Z=(a>'-a>).ifr J

The impulsive pressures on the fixed axis are omitted because by
hypothesis they do not exist.

From these equations we may deduce the following conditions.

I. From (1) we see that X=0, Z= 0, and therefore the force

must act perpendicular to the plane containing the axis and the

centre of gravity.

II. Substituting from (1) in the first two equations of (2) we

have %m]/z = and ^= ., . Since the origin may be taken

anywhere in the axis of rotation, let it be so chosen that '^mocz = 0.

Then the axis of z must be a principal axis at the point where a
plane passing through the line of action of the blow perpendicular

to the axis cuts the axis. So that there can be no centre of

percussion unless the axis be a principal axis at some point in its

length.

III. Substituting fi-om (1) in the last equation of (2) we have

f = -r -^ By Art. 92 this is the equation to determine the centre

of oscillation of the body about the fixed axis treated as an axis

of suspension. Hence the perpendicular distance between the line

of action of the impulse and the fixed axis must be equal to the
distance of the centre of oscillation from the axis.

If the fixed axis be parallel to a principal axis at the centre of

gravity, the line of action of the blow will pass through the centre

of oscillation.

i

Tlie Ballistic Pendulum.

121. It is a matter of considerable importance in the Theory
of Gunnery to determine the velocity of a bullet as it issues from
the mouth of a gun. By means of it we obtain a complete test of
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any theory we have reason to form concerning the motion of the
bullet in the gun; or we may find by experiment the separate

effects produced by varying the length of the gun, the charge of

powder, or the weight of the ball. By determining the velocity of

a bullet at dififerent distances from the gun we may discover the

laws which govern the resistance of the air.

It was to determine this initial velocity that Mr Robins about
1743 invented the Ballistic Pendulum. Before his time but little

progress had been made in the true theory of military projectiles.

His New Principles of Gunnery was soon translated into several

languages, and Euler added to his translation of it into German
an extensive commentary; the work of Euler being again trans-

lated into English in 1784. The experiments of Eobins were all

conducted with musket balls of about an ounce weight, but they
were afterwards continued during several years by Dr Hutton,
who used cannon balls of from one to nearly three pounds in weight.

These last experiments are still regarded as some of the most
trustworthy on smooth-bore guns.

There are two methods of applying the ballistic pendulum,
both of which were used by Robins. In the first method, the gun
is attached to a very heavy pendulum ; when the gun is fired the

recoil causes the pendulum to turn round its axis and to oscillate

through an arc which can be measured. The velocity of the

bullet can be deduced from the magnitude of this arc. In the

second method, the bullet is fired into a heavy pendulum. The
velocity of the bullet is itself too great to be measured directly,

but the angular velocity communicated to the pendulum may be

made as small as we please by increasing its bulk. The arc of

oscillation being measured, the velocity of the bullet can be found

by calculation.

The initial velocity of small bullets may also be determined by
the use of some rotational apparatus. Two circular discs of paper

are attached perpendicularly to the straight line joining their

centres, and are made to rotate about this straight line with a

great but known angular velocity. Instead of two discs, a cylinder

of paper might be used. The bullet being fired through at least

two of the moving surfaces, its velocity can be calculated when
the situations of the two small holes made by the bullet have

been observed. This was originally an Italian invention, but it

was much improved and used by Olinthus Gregory in the early

part of this century.

The electric telegraph is now used to determine the instant at

which a bullet passes through any one of a number of screens

through which it is made to pass. The bullet severs a fine wire

stretched across the screen and thus breaks an electric circuit.

This causes a record of the time of transit to be made by an
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instrument expressly prepared for this purpose. By using several

screens the velocities of the same bullet at several points of its

course may be found.

122. A rifle is attached in a horizontal position to a large

block of luood which can turn freely about a horizontal axis. The

rifle being fired, the recoil causes the pendulum to turn round its

axis, until brought to rest by the action of gravity. A piece of
tape is attached to the pendulum, and is dravjn out of a reel

during the backward motion of the pendulum, and thus serves to

measure the amount of the angle of recoil. It is required to find
the velocity of the bullet.

The initial velocity of the bullet is so much greater than that

of the pendulum that we may suppose the ball to have left the

rifle before the pendulum has sensibly moved from its initial posi-

tion. The initial momentum of the bullet may be taken as a
measure of the impulse communicated to the pendulum.

Let h be the distance of the centre of gravity froni the axis of

suspension
; f the distance from the axis of the rifle to the axis of

suspension; c the distance from the axis of suspension to the
point of attachment of the tape, m the mass of the bullet ; M that

of the pendulum and rifle, and n the ratio of if to m; b the
chord of the arc of the recoil v^rhich is measured by the tape. Let
k' be the radius of gyration of the rifle and pendulum about the
axis of suspension, v the initial velocity of the bullet.

The explosion of the gunpowder generates an equal impulsive

action on the bullet and on the rifle. Since the initial velocity of

the bullet is v, this action is measured by mv. The initial angular
velocity generated in the pendulum by this impulse is by Art. 89

^~iwt^' "^^^ subsequent motion is given (Art. 92) by the

equation

d^0 gh . ^^^,=-psm(?;

. fdd\' „
,
2gh ^

rfff

when ^ = we have -rr = a>, and if a be the angle of recoil, when

dd 2ah
= a, -ir = 0. Hence »'= -ry (1 — cos a). Eliminating to we have

« = —^ . 2 sin ^ Jgh. But the chord of the arc of the recoil is
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& = 2c sin ^ . Hence the initial velocity of the bullet is

The magnitude of k' may be found experimentally by ob-
serving the time of a small oscillation of the pendulum and rifle.

If r be a half-time we have T=7r J^-l . (Art. 97.)

This is the formula given by Poisson in the second volume of

his Mecanique. The reader will find in the Philosophical Maga-
zine for June, 1854, an account of some experiments conducted by
Dr 8. Haughton from which, by the use of this formula, the initial

velocities of rifle bullets were calculated.

123. The formula must however be regarded as only a first approximation, for

the recoil of the pendulum when the gun is fired without a ball has been altogether

neglected. In Dr Haughton's experiments the charge of powder was comparatively

small, and this assumption was nearly correct. But in some of Dr Hutton's

experiments, where comparatively large charges of powder were used, the recoil

without a ball was found to be very considerable.

To allow for this Dr Hutton, following Mr Eobins, assumed that the effect of

the charge of powder on the recoil of the gun is the same either with or without a

ball. If p be the momentum generated by the powder, the whole momentum gene-

rated in the pendulum will be mv+jp instead of mv. Proceeding as before, we find

Mhk' r-rmv+p=—j--Jgh.

If we now repeat the experiment, with an equal charge without a ball, we have

p=—j-sjgh, where \ i

from the other, we have

p=—j-sjgh, where l^ is the chord measured by the tape. Subtracting one result

v =
Mib-^)k'^-

of

Thus Dr Hutton's formula differs from Poisson's in this respect, that the chord of

vibration is first found for any charge without a ball and then for an equal charge

with a ball : the difference of these chords is regarded as the chord which is due to

the recoil of the ball.

When the magnitude of the charge of powder is small, the two methods of using

the ballistic pendulum give nearly the same result. With large charges Dr Hutton

found that the difference was very considerable, a less velocity being indicated by

the method of observing the recoil than by that of firing the ball into the pendulum.

He therefore mferred that the effect of the charge of powder on the recoil of the gun

is not the same when it is fiied without a ball as when it is fired with one.

• We may in some measure understand the reason of this discrepancy if we con-

sider separately the effects of the mflamed powder while the ball is in the gun and

after it has left the barrel. Supposing, merely as an approximation, that the gas

urging the ball forward is of uniform density ; its centre of gravity, at the moment

when the ball is leaving the gun, will be at the middle point of the barrel and mov-
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ing relatively to the gun with half the relative velocity of the ball. If /t be the mass

of the powder, the angular velocity w' communicated to the pendulum will be given

approximately by MW^u' = [ m + ^ ) r/. After the baU has left the gun, the inflamed

powder escapes from the mouth and continues to exert some pressure tending to

increase the recoil. The determination of this motion is a problem in Hydrody-

namics which has not yet been properly solved and which cannot be discussed here.

We may, however, suppose that Kobius' principle applies more nearly to this part

of the motion than to the whole. If so, the momentum generated by the issuing

gas, considered as an impulse, is nearly the same for a given charge and a given

gun, whatever the magnitude of the ball may have been.

If p' be the momentum thus generated we have

/ fi\ ,
Mbk' i-T

If Vq and to be the values of v and h when the gun is fired without a ball, we have

Since Vq is greater than u, this equation would show that, for considerable charges,

Dr Button's formula will give too small a value for v. The value of Vq is however

very imperfectly known.

^124. A gun is placed in front of a heavy pendulum, which
can turn freely about a horizontal axis. The hall strikes the pen-
dulum horizontally, penetrates into the wood a. short distance and
communicates a momentum to the pendulum. The chord of the arc

being measured as before by a piece of tape, find the velocity of the

bullet.

The time, which the bullet takes to penetrate, is so short that

we may suppose it completed before the pendulum has sensibly

moved from its initial position.

Let i be the distance of the ball from the axis of suspension at

the moment when the penetration ceases ; let j be the perpen-
dicular distance between the axis and the direction of motion
of the bullet ; let ^ be the angle the length j makes with the
length represented by i, so that j = i cos/3. Then if we follow the
same notation as before we have at the moment when the impact
is concluded

mvi cos y8 = {Mk'^ + m^) a,

also proceeding as before we may prove

{Mk'* + mi*) G>' = IMgh (1 - cos a) + 2mgi (cos /3 - cos {x -/9)}.

If the gun be placed as nearly as possible opposite the centre of
gravity of the pendulum we have h=j nearly, and if the pendulum
be rather lung /3 will be very small. Hence, since m is small
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compared with M, we may as an approximation put i=h and

^ = in the terms which contain m as a factor, we thus find

M+mhh ,-v >
V = ^ J at,m cj ^ •

where I is the distance of the centre of oscillation of the pendulum
and ball from the axis of suspension.

The inconvenience of this construction as compared with the

former is that the balls remain in the pendulum during the time

of making one whole set of experiments. The Aveight, and the

positions of the centres of gravity and oscillation, will be changed
by' the addition of each ball which is lodged in the wood. Even
then the changes produced in the pendulum itself by each blow
are omitted. A great improvement was made by the French in

conducting their experiments at Metz in 1839, and at L'Orient

in 1842. Instead of a mass of wood, requiring frequent renewals,

as in the English pendulum, a permanent r^cepteur was substi-

tuted. This receiver is shaped within as a truncated cone, which

is sufficiently long to prevent the shot from passing entirely

through the sand with which it is filled. The front is covered

with a thin sheet of lead to prevent the sand from being shaken

out. This sheet is marked by a horizontal and by a vertical

line, the intersection corresponding to the axial line of the cone,

so that the actual position of the shot when entering the re-

ceiver can be readily determined by these lines.

125. Ex. 1. Show that after each bullet has been fired into a ballistic pen-

dulum constructed on the English plan, h must be increased by
j^ {j - h) and I by

jj>(j - 1) nearly in order to prepare the formula for the next shot.

Ex. 2. Dr Haughton found that, for rifles fired with a constant charge, the

initial velocity of the bullet varies as the square root of the mass of the bullet

inversely and as the square root of the length of the gun directly. Show from tbis,

that the force developed by the explosion of the powder diminished by the friction

of the barrel is constant as the baU traverses the rifle.

Dr Button found that in smooth bores the velocity increases in a ratio some-

\th&t less than the square root of the length of the gun, but greater than the cube

root of the length.

Ex. 3. If the velocity of a bullet issuing from the mouth of a gun 30 inches

long be 1000 feet per second, show that the time the bullet took to traverse the gun

was about -^ of a second.

Ex. 4. It has been found by experiment that if a bullet be fired into a large

fixed block of wood, the penetration of the bullet into the wood varies nearly as the

square of the velocity, though as the velocity is very much increased the depth of

penetration falls short of that given by this rule. Assuming tbis rule, show that
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the resistance to penetration is constant and that the time of penetration is the

ratio of twice the space to the initial velocity of the bullet. In an experiment of

Dr Button's a ball fired with a velocity of 1500 feet per second was found to pene-

trate about 14 inches into a block of sound dry elm ; show that the time of penetra-

tion was tIt of a second.

1/

THE ANEMOMETER.

126. The Anemometer called a "Robinson" consists of four hemispherical

cups attached to four horizontal arms which turn round a vertical axis. The wind

blows into the hollows on one side of the axis and against the convex surfaces of

the cups on the other. If the anemometer start from rest, it will turn quicker and

quicker until the moment of the pressures of the wind balances the moment of

the resistances. Let V be the velocity of the wind and v the velocity of the centres

of the cups. Let be the angle between the direction of motion of any one cup

and that of the wind. Then the velocity of the centre of that cup relatively to the

wind will be v' where
v'^=v^-2Vvooae + V^ (1).

The determination of the pressure of the wind on the cups is properly a problem

in Hydrodynamics, but no solution has yet been found. In the mean time we may
assume as an approximation the law, suggested by numerous experiments, that the

resistance to a body moving in a straight line in a fluid varies as the square of the

relative velocity. In any one position of the anemometer all parts of any one cup

have not the same velocity relative to the wind. We shall therefore take as our

expression for the moment about the axis of the Anemometer of the resultant

pressure of the wind some quadratic function of V and v, such as

aV^ + 2pVv + yv^ (2),

where a, j3, y depend in some manner as yet unknown on the position of the cups

relatively to the wind.

Thus a, /3, 7 are functions of 6 and will change as the cups turn round the axis.

"What we want however is the average effect on the anemometer. The mean for

space is found by multiplying this expression by d6 and integrating from ^=0 to

27r and finally dividing by 27r. If F be the mean moment about the axis of the

anemometer of the wind pressure, we have

F=AV^-2BVv-Cv^ (3),

where A, B, G are constants which depend on the pattern of the anemometer.

The signs of these coeflBcients may be determined by the following reasoning.

Wlien the anemometer starts from rest, the initial moment of the wind pressure is

regarded as positive. When the cups begin to move, the pressure begins to decrease,

dF
80 that -J— must be negative when v is small, it follows that the sign of the

coefficient of Vv in (3) must be negative. Finally, if the wind cease when the cups

are in motion so that V=0, the resistance of the quiescent air must tend to stop

the cups. It follows that the coefficient of v^ in (3) must be also negative.

127. When the anemometer has attained its final state of motion, we must
have F equal to the mean moment of the friction on the supports. The instru-

ment should bo so arranged that the friction due to its weight is as small as

possible. We may then omit this friction as our formula is only an approximation.
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The supports of the anemometer have also to sustain the lateral pressure of the

wind. Probably the greater part of the friction thus produced is proportional to

the pressure of the wind, and may be included in the formula (3) by an alteration of

the constants. As these constants are determined by experiment, we may suppose

aU forces to be included in the expression for F which are quadratic functions of

the velocities.

In the Observatory at Greenwich an inverted cup rotating in oil on a fixed

conical point is used for the vertical bearing. No further correction is made for

friction. This arrangement appears to be very successful, the instrument is very

sensitive and exhibits a slow rotation with a very shght movement of the air.

When F is equated to zero, we have a quadratic to determine the ratio of F to

V. Let m be the positive root thus found. Then the velocity of the centre of any

cup being observed, the velocity of the wind is found by simply multiplying this

observed quantity by m. We may notice that m is independent of the speed of the

wind, and of the size of the machine. It depends however on the pattern of the

machine.

128. A variety of experiments have been made to determine the numerical

value of m. In some of these the anemometer is attached to the outer edge of a

whirling-machine. The axis of the anemometer is thus made to move round with

a constant velocity F. If the experiment be made on a calm day, this will

represent the effects of a wind of the same velocity on a fixed anemometer. The
value of V can be found by counting the number of revolutions of the anemometer in

space. In a paper in 1850, published in the Irish Transactions, Dr Eobinson gives

7/1 = 3 as the mean value of the ratio as determined by experiments of this kind.

This value of m has been generally adopted.

Other experiments made in Greenwich Park in 1860 led to the same value of m.

These results were considered as confirming in a very high degree the accuracy of

this ratio, see the Greemvich Observations for 1862. About 1872 further experi-

ments were made with a steam merry-go-rovmd for a whirling machine. These are

described by Prof. Stokes in the Proceedings of the Royal Society for May, 1881.

Another method of conducting the experiments is to have two similar anemo-

meters rotating about fixed axes and to apply to one of them a known retarding

force of some kind which may diminish its v. Thus we have two different

machines moving with different, but known, velocities round their respective axes,

from each of which we should deduce the same velocity for the wind. This leads

to two equations between which we may eliminate the unknown velocity of the

wind. We thus obtain an equation connecting the constants A, B, C and the

known retarding force, Kepeating the experiment, we may obtain a suflScient

number of equations to find these constants. The value of m may then be found

in the manner explained in Art. 127, The practical diflSculty in this method of

conducting the experiments is that of finding a known uniform retarding force

which may be conveniently applied to the anemometer. The reader may consult a

paper by Dr Robinson in the Phil. Trans, for 1880.

129, Ex, 1. Supposing the value of F to be represented by AV^-2BVv as

indicated by some experiments, show that if an anemometer start from rest, the

velocity v of the cups will continually increase and tend to a certain finite limit.

Show also that the time, at which the actual velocity of the cups is any given

fraction of the limiting velocity, varies as the moment of inertia of the anemometer

about its axis, and inversely as the velocity of the wind.
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Ex. 2. When the anemometer was attached to the outer edge of a merry-go-

round, as described above, it was impossible to find a perfectly calm day. If W be

the velocity of the wind which is supposed to be small, then allowance may be

made for IF if in the formula F=AV^-2BVvwe write F+k -=^ for V where k is J

or I according as the moment of inertia of the anemometer about its axis is very

small or very great. The anemometer is supposed to be without friction. This

theorem is due to Prof. Stokes : a demonstration is given in the Proceedings of the

Eoyal Society for May, 1881.

Ex. 3. An anemometer without friction is acted on by a gusty wind. whose

velocity may be represented by the formula F (1 + a sin nt) where a is so small that

its square can be neglected. Show that the velocity of any cup will be represented

by an expression of the form r {1 + a cos nj3 sin n (« - j3)}, so that the anemometer

follows all the changes in the force of the wind after an interval /3. Here

AV^-2BVv-Cv^=0, and

*"°"^= 2a(/F+Ci;) '

where a is the distance of the centre of a cup from the axis, and I is the moment of

inertia of the machine about the axis.



CHAPTER IV.

MOTION IN TWO DIMENSIONS.

On the Equations of Motion.

^ 130, The position of a body in space of two dimensions
may be determined by the co-ordinates of its centre of gravity,

and the angle some straight line fixed in the body makes with
some straight line fixed in space. These three have been called the
co-ordinates of the body, and it is our object to determine them
in terms of the time.

It will be necessary to express the eflfective forces of the body
in terms of these co-ordinates. The resolved parts of these

effective forces parallel to the axes have been already found in

Art, 79, all that is now necessary is to find their moment about
the centre of gravity. If (x', y') be the co-ordinates of any
particle of mass m referred to rectangular axes meeting at the

centre of gravity and parallel to axes fixed in space, this moment

has been shown in Art. 72 to be equal to -^ , where

*=2K^'f-^'f)
Let Q be the " angular co-ordinate " of the body, i.e. the angle

some straight line fixed in the body makes with some straight line

fixed in space. Let (r, <^') be the polar co-ordinates of any par-

ticle m referred to the centre of gravity of the body as origin.

Then r is constant throughout the motion, and -^ is the same° at

do
for every particle of the body and equal to -y- . Thus the an-

gular momentum h, exactly as in Art. 88, is

where Mk^ is the moment of inertia of the body about its centre

of gi-avity.
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The angle 6 is the angle some straight line fixed in the body

makes with a straight line fixed in space. Whatever straight

dB
lines are chosen -r- is the same. If this be not obvious, it may

at

be shown thus. Let OA, O'A' be any two straight lines fixed in

the body inclined at an angle a to each other. Let OB, O'B be

two straight lines fixed in space inclined at an angle ^ to each

other. Let AOB = 0, A'0'B' = ff, then 6' + ^ = 6+ a. Since

a and /3 are independent of the time, -Ji =-jt- By this propo-

sition we learn that the angular velocities of a body in two di-

mensions are the same about all points.

'^ 131. The general method of proceeding will be as follows.

Let (a;, y) be the co-ordinates of the centre of gravity of

any body of the system referred to rectangular axes fixed in space,

M the mass of the body. Then the eifective forces of the body

are together equivalent to two forces measured by ^-fjsr, ^^
acting at the centre of gravity and parallel to the axes of co-

ordinates, together with a couple measured by Mk^ -j^ tending to

turn the body about its centre of gravity in the direction in which
is measured. By D'Alembert's principle the eifective forces of all

the bodies, if reversed, will be in equilibrium with the impressed

forces. The dynamical equations may then be formed according

to the ordinary rules of Statics.

For example, if we took moments about a point whose co-

ordinates are (p, q) we should have an equation of the form

"{^"-P'^W-^-'i^l?]
,,,,d -r

where L is the moment of the impressed forces and the other

letters have the same meaning as before. In this equation {», q)
may be the co-ordinates of any point whatever, whether fixed

or moving. Just as in a statical problem (see Art. 83), the

solution of the equations may frequently be much simplified by
a proper choice of the point about which to take moments. Thus
if we wished to avoid the introduction into our equations of some
unknown reaction, we might take moments about the point of

application or use the principle of virtual velocities. So again in re-

solving our forces we might replace the Cartesian expressions J/ ti i

M^^ ,.y the polar fonns 3/{fr_,.@y} .„a 3.1| (.•
^f)
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for the resolved parts parallel and perpendicular to the radius

vector. If V be the velocity of the centre of gravity, p the radius

of curvature of its path, we may sometimes also use with advantage
dv V

the forms M -r- and M - for the resolved parts of the effective
at p

^

forces along the tangent and radius of curvature of the path of the

centre of gravity.

As a guide to a proper choice of the directions in which to

resolve the forces or of the points about which we should take

moments we may mention two important cases.

"^ 132, First we should search if there be any direction fixed in

space in which the resolved part of the impressed forces vanishes.

By resolving in this direction we get an equation which can be
immediately integrated. Suppose the axis of x to be taken in

this direction ; let M, M', &c. be the masses of the several bodies,

X, x, &c. the abscissae of their centres of gravity, then by Arts. 78
or 131, we have

which by integration gives

where G is some constant to be found from the initial conditions.

This equation may also be again integrated if required.

This result might have been derived from the general princi-

ples of the conservation of the translation of the centre of gravity

laid down in Art. 79. For since there is no impressed force

parallel to the axis of x, the velocity of the centre of gravity of the

whole system resolved in that direction is constant.

,

133. Next we should search if there be any point fixed in

space about which the moment of the impressed forces vanishes.

By taking moments about that point we again have an equation

which admits of immediate integration. Suppose this point to be

taken as origin, and the letters to have their usual meaning, then

by the first article of this chapter we have

the S referring to summation for all the bodies of the system.

Integrating we have

{^(4r-^l)-^^41=^-
R. D.
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where C is some constant to be determined by the initial condi-

tions of the question.

This equation expresses that if the impressed forces have no

moment about any point, the angular momentum about that

point is constant throughout the motion. This result follows at

once from the reasoning in Art, 78.

134. Angular Momentum. As we shall have so frequently

to use the equation formed by taking moments, it is important

to consider other forms into which it may be put. Let the point

about which we are to take moments be fixed in space, so that

it may be chosen as the origin of co-ordinates. Then the moment
of the effective forces on the body M is

dtH4-^^y^^f^-^-
The attention of the reader is directed to the meaning of the

several parts of this expression. We see that, as explained in

Art. 78, the moment of the effective forces is the differential

coefficient of the moment of the momentum about the same point.

The moment ofthe momentum by Art. 76 is the same as the moment
about the centre of gravity together with the moment of the whole

mass collected at the centre of gravity, and moving with the velocity

of the centre of gravity. The moment round the centre of gravity

is by the first Article either of Chap. III. or Chap. rv. equal to

Mk^ -r: and the moment of the collected mass isiffic-^ — 2/-jt),

where {x, y) are the co-ordinates of the centre of gravity. Hence
in space of two dimensions we have for any body of mass M

angular momentum round) _-^( dy dx\ j^,^ dd

theorigin ]~^\^di~yjt)^^''Tf
If we prefer to use polar co-ordinates, we can put this into]

another form. Let (r, 0) be the polar co-ordinates of the centre of
j

gravity, then,

angular momentum round") _ ir a ^^ i/w ^^

the origin
J dt dt

'

If V be the velocity of the centre of gravity, and p the per-'

pendicular from the origin on the tangent to its direction of

motion, the moment of momentum of the mass collected at the

centre of gravity is Mvp, so that we also have

angular momentum round) ,, ,„^dd
., . . \ = Mvp + Mk* -;j-

.

the origin
J dt

It is clear from Art. 76 that this is the instantaneous angula

momentum of the body about the origin, whether it is fixed
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moveable, though in the latter case its differential coefficient with
regard to t is not the moment of the effective forces.

Since the instantaneous centre of rotation may be regarded as

a fixed point, when we have to deal only with the co-ordinates and
with their first differential coefficients with regard to the time, we
have

angular momentum round the) ,, , » ,^^ d0
. > = M (r +k) -:r'
instantaneous centre j at

If Mk'^ be the moment of inertia about the instantaneous

centre, this last moment may be written Mk'^ -7-

.

In taking moments about any point whether it be the centre

of gravity or not, it should be noticed that the Mk'^ in all these

formulae is the moment of inertia with regard to the centre of

gravity, and not with regard to the point about which we are

taking moments. It is only when we are taking moments about

the instantaneous centre or about a fixed point that we can use

the moment of inertia about that point instead of the moment
of inertia about the centre of gravity, and in these cases our

expression for the angular momentum includes the angular mo-
mentum of the mass collected at the centre of gravity.

135. General Mode of Solution. Suppose we form the

equations of motion of each body by resolving parallel to the axes

of co-ordinates and by taking moments about the centre of gravity.

We shall get three equations for each body of the form

M-T-^=F cos (j) { B cos yjr +..

,

M^ = Fsm<f> + Rsm^|r+ ... } (1),

Mk'^= Fp +Rq +..

where F is any one of the impressed forces acting on the body,

whose resolved parts are Fcoscfi, Fsiacf), and whose moment
about the centre of gravity is Fp, and R is any one of the re-

actions. These we shall call the Dynamical equations of the body.

Besides these there will be certain geometrical equations

expressing the connections of the system. As every such forced

connection is accompanied by a reaction and every reaction by

some forced connection, the number of geometrical equations will

be the same as the number of unknown reactions in the system.

Having obtained the proper number of equations of motion

we proceed to their solution. Two general methods have been

proposed.

8—2
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First Method of Solution. Differentiate the geometrical equa-

tions twice with respect to t, and substitute for -^ , -^ , -j-j

,

from the dynamical equations. We shall then have a sufficient

number of equations to determine the reactions. This method
will be of great advantage whenever the geometrical equations are

of the form

Ax + By+C0 = D (2),

where A, B, C, D are constants. Suppose also that the dynamical

equations are such that when written in the form (1) they contain

only the reactions and constants on the right-hand side without

any x, y, or 6. Then, when we substitute in the equation

.dj^x „cfy ^dJ^O .

obtained by differentiating (2), we have an equation containing

only the reactions and constants. This being true for all the

geometrical relations, it is evident that all the reactions will be
constant throughout the motion and their values may be found.

Hence when these values are substituted in the dynamical equa-

tions (1), their right-hand members will all be constants and the

values of x, y, and 6 may be found by an easy integration.

If however the geometrical equations are not of the form (2),

this method of solution will usually fail. For suppose any geo-

metrical equation took the form

containing squares instead of first powers, then its second dif-

ferential equation will be

d^x d^y /dxV (dy\* ^

dJ^x d\
and though we can substitute for^ ,

—^ , we cannot, in general,

eliminate the terms (-j-j and [-n] '

136. The reactions in a dynamical problem are in many
cases produced by the pressures of some smooth fixed obstacles

which are touched by the moving bodies. Such obstacles can only

pu^h, and therefore if the equation showed that such a reaction

changes sign at any instant, it is clear that the body will leave the

obstacle at that instant. This will occasionally introduce discon-

tinuity into our equations. At first the system moves undei-

certain constraints, and our equations are found on that suppo-

sition. At some instant which may be determined by the vanish-
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ing of some reaction, one of the bodies leaves its constraints and
the equations of motion have to be changed by the omission of

this reaction. Similar remarks apply if the reactions be produced
by the pressure of one body against another.

It is important to notice that luhen this first method of solu-

tion applies, the reactions are constant throughout the motion, so

that this kind of discontinuity can never occur. If a moving
body be in contact with another, they will either separate at the

beginning of the motion or will ahuays continue in contact. These
reactions are also independent of the initial conditions, and are

therefore the same as if the system were placed in any position

at rest.

137. Suppose that in a dynamical system we have tivo bodies

which press on each other with a reaction R ; let us consider

how we should form the corresponding geometrical equation.

We have clearly to express the fact that the velocities of the

points of contact of the two bodies resolved along the direc-

tion of jR are equal. The following proposition will be often

useful. Let a body be turning about a point Q with an angular

d9
velocity -^ = co in a direction opposite to the hands of a watch,

and let G be moving in the direction GA with a velocity V. It

is required to find the velocity of any point P resolved in any

direction PQ, making an angle ^ with GA. In the time dt the

whole body, and therefore also the point P, is moved through a

space Vdt-psiTSiWel to GA, and during the same time P is moved

perpendicular to GP through a space oo.GP.dt. Resolving

parallel to P Q, the whole displacement of P
= ( Fcos </)

- 6) . (?P sin GPF) dt

If GN = p be the perpendicular from G on PQ, we see that the

velocity of P parallel to PQ is = V cos — wp.

It should be noticed that this is independent of the position of

P on the straight line PQ. It follows that the velocities of all

points in any straight line PQ resolved along PQ are the same.
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In practice, therefore, we only use that point in the direction

oi PQ which is most convenient, and this is generally the foot of

the perpendicular from the centre of gravity.

If {x, y, 6), {x, y\ 6') be the co-ordinates of the two bodies,

q, q' the perpendiculars from the points {x, y), (x\ y) on the direc-

tion of any reaction R, •yjr the angle the direction of R makes with

the axis of x, the required geometrical equation will be

dx , dy . . d0 dx , dy . , dO" ,

If the bodies be perfectly rough and roll on each other with-

out sliding, there will be two reactions at the point of contact,

one normal and the other tangential to the common surface of the

touching bodies. For each of these we shall have an equation

similar to that just found. But if there be any sliding friction

this reasoning will not apply. This case will be considered a little

further on.

138. Second Method of Solution. Suppose in a dynamical
system two bodies of masses M, M' are pressing on each other

with a reaction jR. Let the equations of motion of M be those

marked (1) in Art. 135, and let those of M' be obtained from
these by accenting all the letters except R, i/r and t, and writing

— R for R, yjr and t being of course unaltered. Let us multiply

the equations of motion ofJlfby 2-^, 2-|^, 2 -r- respectively,

and those of if by corresponding quantities. Adding all these six

equations, we get

^,^/dxd^x dyd^y ,.ded^e\ ,

ojj/ ,
dx . , dy dd\ .^f ,

dx . , dy ,dd'
2Ji (^oosf 3^

+s,n^ J+y-^J-2fi (cost ^+smfJ-+J ^
The coefficient of R will vanish by virtue of the geometrical

equation obtained in the last Article. And this reasoning will

apply to all the reactions between each two of the moving bodies.

Suppose the body M to press against some external fixed
obstacle, then in this case R acts only on the body M, and its

coefficient will be restricted to the part included in the first

bracket. But the velocity of the point of contact resolved along
the direction of R must vanish, and therefore the coefficient of

+

R is again zero.

I
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Let A be the point of application of the impressed force F,
and let the velocity of A resolved along the direction of action of F
be -4, . Then we see that the coefficient of 2F is —. It also

at dt

follows from the definition of df that Fdf is what is called in

Statics the virtual moment of the force F.

We have thus a general method of obtaining an equation free

from the unknown reactions of perfectly smooth or perfectly

rough bodies. The rule is, Multiply the equations having

If-^-j-, M-j^ , Mk^ -j^ , &c. on their left-hand sides by -5-
,

-~ ,

-J-
, &c., and add together all the resulting equations for all

the bodies. The coefficients of all the unknown reactions will be
found to be zero by virtue of the geometrical equations.

The left-hand side of the equation thus obtained is clearly

a perfect differential. Integrating we get

^m-m-^'&-^-='-'i^'f-
where G is the constant of integration.

In practice it is usual to omit all the intermediate steps and
write down the resulting equation in the following manner

:

where U is the integral of the virtual moment of the forces.

This is called the equation of Vis Viva. Another proof will

be given in the chapter under that heading.

139. Vis Viva of a body. The left-hand side of this equa-

tion is called the vis viva of the whole system. Taking any one

body M, we may say that

vis^.aof^=..g)V(|)V^(f)].

If the whole mass were collected into its centre of gravity and

were to move with the velocity of the centre of gravity, k would be

zero, and the vis viva would be reduced to the two first terms.

These terms are therefore together called the vis viva of transla-

tion, and the last term is called the vis viva of rotation.

If v be the velocity of the centre of gravity, we may write this

equation

vis viva of i/ = Mv' +M¥ f^j
.
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If we wish to use polar co-ordinates, we have

dt) \dtJ ^ \dtJ
_

where [r, </>) are the polar co-ordinates of the centre of gravity.

If p be the distance of the centre of gravity from the instanta-

dd
neous centre of rotation of the body, P -tt is clearly the velocity

of the centre of gravity, and therefore

vis viva oi M=M(p^ + k^) i-j

140. Force Function and Work. The function U in the

equation of vis viva is called the force function of the forces. It

may always be obtained, when it exists, by writing down the virtual

moment of the forces according to the rules of tStatics, integrating

the result and adding a constant. This definition is sufficient for

our present purpose ; for a more complete explanation, the reader

is referred to the beginning of the chapter on Vis Viva.

When the forces are functions of several co-ordinates, it might
be supposed that it would often happen that the virtual moment
could not be integrated until the relations between these co-ordi-

nates had been found by some other means. But it will be shown
in the chapter on Vis Viva that this is not so. In nearly all the

cases we have to consider the virtual moment will be a perfect

differential. In the remarks which follow in this and in the next
three articles it will therefore be convenient to suppose that the

function U exists, and is a known function of the co-ordinates of the

system.

In a subsequent chapter we shall discuss more particularly the
various forms which the force function may assume. For the
present we shall merely show how to find its form for a system of

bodies which are falling under any constraints by the action of

gravity alone.

Let X, y be the horizontal and vertical co-ordinates of any
particle of the system and let the latter co-ordinate be measured
downwards. Let m be the mass of the particle. The virtual

moment is therefore Xmgdy. The force function may therefore be
written

U=jXmgdy = ^mgy + G
= gytm + G,

where y is the depth of the centre of gravity of the whole system
below the axis of x.

Sometimes to avoid the constant we take the integral be-
tween limits. The force' function is then called the work of the
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forces as the system passes from the position indicated by the
lower limit to that indicated by the upper limit.

The result just arrived at may therefore be stated thus. If, as

a system moves from one position to another, its centre of gravity

descends a vertical space h, the ivorh done by gravity is Mgh where
M is the whole mass of the system.

"We notice that this result is independent of any changes in

the arrangement of the bodies which constitute the system, it

depends solely on the vertical space descended by the centre of

gravity.

141, Principle of Vis Viva. Sometimes a system may
move from one position to another in several different ways. Per-

haps we do not want the intermediate motion but only the motion
in the last position when that in the former is given. In such a

ease we avoid introducing the constant C in the equation of vis

viva by taking the integral in Art. 138 between limits. Thus we
say

change in the] _ (twice the work done

vis viva
J ( by the forces.

In this equation the change in the vis viva is found by subtracting

from the vis viva in the final position, the vis viva in the first. In
finding the work done by the forces, the upper limit of the integral

(as already explained) depends on the final position of the system

and the lower limit depends on the first position,

Th6 great importance of this equation is that we have a result

free from all the reactions or constraints of the system. The
manner in which the system moves from the first position to the

last is a matter of indifference. So far as this equation is con-

cerned, we may change the mode of motion in any way by intro-

ducing or removing any constraints or reactions provided only

they are such as would not appear in the equation of virtual

moments as used in Statics.

We must notice that some reactions will not disappear from

the equation of virtual velocities in Statics, for example, friction

between two areas which slide over each other. In forming the

equation of vis viva in Dynamics, this kind of friction when it

occurs will appear along with the other forces on the right-hand

side of the equation.

As the system moves from one given position to another, it is

evident that the change in the vis viva produced by each force

is twice the integral of the virtual moment of that force. It

follows that the whole change is the sum of the changes produced
' by the separate forces. Taking then any one force F, we see that

-when its direction makes an acute angle with the direction of the
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motion of the point A of the body at which it acts, F and df
will have the same sign, and the integral in the equation of

vis viva is positive. The effect of the force is therefore to increase

the vis viva. But when the direction of the force is opposed to

the direction of the motion of A, i.e. when the force makes an

acute angle with the reversed direction of the motion of A, the

effect of the force is to decrease the vis viva. This rule will enable

us to determine the general effect of any force on the vis viva

of the system.

142. Suppose, for example, a body moves or rolls under the

action of gravity with one point in contact with a fixed surface

which is either perfectly rough or perfectly smooth so that there

can be no sliding friction. Let it be started off in any manner,

then the initial vis viva is known. The vis viva decreases or

increases according as the centre of gravity rises above or falls

below its original level. As the body moves the pressure on the

surface will change and may possibly vanish and change sign. In

this case the body will jump off the surface. The centre of gravity

by Art. 79 will then describe a parabola and the angular velocity

of the body about its centre of gravity will be constant. Presently

the body may impinge again on the surface, but until this last

event occurs the equation of vis viva is in no way affected by the

body leaving the surface. But the case is different when the body
impinges on the surface. To make this point clearer, let F be

the reaction of the surface, A the point of the body at which it

acts, and Fdf its virtual moment as in Art. 138. Then as the

body moves on the surface, df is zero, and when the body has left

the surface, F is zero, so that during the motion until the impact

occurs the virtual moment Fdf is zero for the one reason or the

other. This reaction therefore does not appear in the equation

of vis viva. But when the body impinges on the surface, the

point A is approaching the surface and the reaction F is resisting

the advance of A so that neither F nor df is zero. Here we
measure F in the same manner as in the first part of the motion,

regarding it as a very great force which destroys the velocity

of -4 in a very short time (Art. 84). During the period of com-
pression, the force F resists the advance of A, and therefore the

vis viva of the body is decreased. But during the period of

restitution the force assists the motion of A and thus the vis

viva is increased. We shall show further on that the vis viva

is decreased by an impact except in the extreme case in which the

bodies are perfectly elastic, and we shall investigate the amount
lost. As a general rule we may notice that the equation of vis

viva is altered by an impact.

We may find a superior limit to the altitude y to which the

centre of gravity can rise above its original level. The equation of
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vis viva may be written

/vis viva in any\ _ /initial vis\ ^ _ ^^^
\ position ) \ viva )

^^'

where M is tlie mass of the body. Now the vis viva can never be
negative, hence the centre of gravity cannot rise so high that

2Mgy > initial vis viva.

In order that the centre of gravity should reach this altitude it is

necessary that the vis viva of the body should vanish, i.e. both
the velocity of translation of the centre of gravity and the angular

velocity of the body must simultaneously vanish. This cannot

in general occur if the body jump off the surface, for both the

angular velocity and the horizontal velocity of the centre of

gravity will not usually vanish at the moment of the jump, and
both of these will remain constant, as explained above, during the

parabolic motion. After the subsequent impact a new motion may
be supposed to begin with a diminished vis viva and therefore a
diminished superior limit to the altitude of the centre of gravity.

143. Sometimes there is only one way in which the system

can move. In such a case all we have to find is the velocity of

the motion. The geometry of the system will determine the x, y, 6

of each body in terms of some one quantity which we may call <^.

The vis viva of the body M, as given by Art. 139, wiU now take

the form

where P is a known function of the co-ordinates of M. The equa-

tion of vis viva will therefore take the form

(2^)©'='^+^^

and thus -^ can be found for any given position of the system.

It follows that if there is only one way in which the system

can move, that motion will be determined by the equation of vis

viva. But if there be more than one possible motion, we must
find another integral of the equations of the second order. What
should be done will depend on the special case under considera-

tion. The discovery of the proper treatment of the equations is

often a matter of great difficulty. The difficulty will be increased,

if in forming the equations care has not been taken that they

should have the simplest possible forms.

144. Examples of these Principles. The following ex-

amples have been constructed to illustrate the methods of applying

these principles to the solution of dynamical problems. In some
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cases more than one solution has been given, to enable the reader

to compare dififerent methods. The mode of forming each equation

has been minutely explained. Running remarks have been made
which it is hoped will clear up those difficulties which generally

trouble a beginner. The attention of the student is therefore

particularly directed to the dififerent principles used in the follow-

ing solutions.

A homogeneous sphere rolls directly down a perfectly rough iiicUned plane under

the action of gravity. Find the motion.

Let o be the inclination of the plane to the horizon, a the radius of the sphere,

mk^ its moment of inertia about a horizontal diameter.

Let be that point of the inclined plane which was initially touched by th<

sphere, and N the point of contact at the time t. Then it is obviously convenieni

to choose for origin, and ON for the axis of x.

i The forces which act on the sphere are, first, the reaction JB perpendicular td

/\ ON, secondly, F the friction acting at It^along NO and mg acting vertically at <

the centre. The effective forces are m-y-^, m-^ acting at C parallel to the axe

of X and y and a couple mi^ -^ tending to turn the sphere round C in the directioi

NA. Here 6 is the angle any fixed straight line in the body makes with a fin

straight line in space. We shall take the fixed straight line in the body to b<

the radius CA, and the fixed straight line in space the normal to the incline

plane. Then 6 is the angle turned through by the sphere.

Resolving along and perpendicular to the inclined plane we have

(Pa;m-^ =mg&na-F (1),

d^m j^= -mg cosa + iJ (2).

Taking moments about N to avoid the reactions, we have

na -^ + m.k' --^=mga sma (3).

Since there are two unknown reactions F and R, we shall require two geom(

trical relations. Because there is no slipping at N, we have

x=a9 (4).

Also because there is no jumping y= a (5)
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Both these equations are of the form described in the first method. Differen-

tiating (4) yje g&i -~-^=a-j-^. Joining this to (3) we have

d?x a' . ,,,

dt^
= ^^TP^^^°« (^)-

2 d/^x
Since the sphere is homogeneous, i^=r "^i ^^^ ^^ have -^ = ~ g sina.

If the sphere had been sliding down a smooth plane, the equation of motion

d?x
would have been ;^= <7 sin a, so that two-sevenths of gravity is used in turning

the sphere, and five-sevenths in urging the sphere downwards.

Supposing the sphere to start from rest we have clearly

md the whole motion is determined.

In the above solutions, only a few of the equations of motion have been used,

nd if only the motion had been required it would have been unnecessary to write

down any equations except (3) and (4). If the reactions also be required, we must

use the remaining equations. From (1) we have

2F = -mg sm a.

From (2) and (5) we have R=mg cos a.

It is usual to delay the substitution of the value of F in the equations until the

Bnd of the investigation, for this value is often very complicated. But there is

mother advantage. It serves as a verification of the signs in our original equa-

tions, for if equation (6) had been

d?x a?

we should have expected some error to exist in the solution. For it seems clear

hat the acceleration could not be made infinite by any alteration of the internal

itructure of the sphere.

Ex. If the plane were imperfectly rough with a coefficient of friction /* less

than f tan a, show that the angular velocity of the sphere after a time t from rest

, , , 5u fl cos a
would be -^ t.

2 a

145. A homogeneous sphere rolls down another perfectly rough fixed sphere.

Find the motion.

Let a and h be the radii of the moving and fixed spheres, respectively, C and

the two centres. Let OB be the vertical radius of the fixed sphere, and 0= z BOG.

Let F and R be the friction and the normal reaction at N. Then resolving

tangentially and normally to the path of C, we have

(a + 6)_|=^sxn0-- (1).

('^+^Ksy=^"°^-^
^'^-
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Let A be that point of the moving sphere which originally coincided with B.

Then if 6 be the angle which any fixed line, as C^, in the body makes with az

fixed line in space, as the vertical, we have by taking moments about G

^--^ mdfi'mk' ^
'•

It should be observed that we cannot take as the angle AGO because, though

GA is fixed in the body, CO is not fixed in space.

The geometrical equation is clearly a (0 - <f))
= h<f> (4).

No other is wanted, since in forming equations (1) and (2) the constancy of the

lUstance CO has been already assumed.

The form of equation (4) shows that we can apply the first method. We thus

obtain

and we are finally led to the equation

(a+ ^) ^J
= 7^sin^.

d4>
By multiplying by 2 -3- and integrating we get after determining the constant

the rolling body being supposed to start from rest at a point indefinitely near B.

This result might also have been deduced from the equation of \'i3 viva. The

vis viva of the sphere iBm\v^+¥ l-r-\ i and v={a+ b)-^ . The force function by

Art. 140 is=m^y if y be the vertical space descended by the centre. We thus have

i<' + ^)'{%' + ^'{^y=^S{a+b)(l-oos<p),

which is easily seen to lead, by the help of (4), to the same result.

To find where the body leaves the sphere we must put jR= 0. This gives by (2)

(a + 6)(-^-j =^cos^; .•.-=- (7{l-cos^) = <7 cos^; .'. cos<l>=j=. It may be re^

marked that this result is independent of the magnitiides of the spheres.
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' Ex. 1. If the spheres had been smooth the upper sphere would have left the
lower sphere when cos 0=f.

. Ex. 2. A rod rests with one extremity on a smooth horizontal plane and the

other on a smooth vertical wall at an inclination a to the horizon. If it then slips

down, show that it will leave the wall when its inclination is sin-^ (| sina).

^ Ex. 3, A beam is rotating on a smooighorizontal plane about one extremity,

which is fixed, under the action of no ford^^Bpt the resistance of the atmosphere.

Supposing the retarding effect of the resis^R^ on a small element of the beam of

length a to be Aa{-vel.)^, then the angular velocity at the time t is given by

1 1 Aa* ,^ . „ „ .

.-^ = mZ^'-
[Q'^eens;Coll.]

Ex. 4. An inclined plane of mass M is capable of moving freely on a smooth

horizontal plane. A perfectly rough sphere of mass m is placed on its inclined face

and rolls down under the action of gravity. If x be the hojiawital space advanced

by the inclined plane, x the part of the plane rolled over by the sphere, prove that

(Jlf+m)«'=ma; cosa, ^x~x' (iQSa=\gt^sm.a,

where o is the inclination of the plane to the horizon.

JEx. 5. Two equal perfectly rough spheres are placed in unstable equilibrium,

one on the top of the other ; the lower sphere resting on a perfectly smooth table.

The slightest disturbance being given to the system, show that the spheres wiU
continue to touch each other at the same points and if d be the inclination to the

vertical of the straight Hne joining the centres,

(^2 + a2+o2 sin2^) {^\ =2ga (1 - cos0).

Ex. 6. Two unequal perfectly smooth spheres are placed in unstable equili-

brium one on the top of the other ; the lower sphere resting on a perfectly smooth

table. A very slight disturbance being given to the system, show that the spheres

will separate when the straight line joining the centres makes an angle
<f>
with the

vertical, given by the equation — cos'd - 3 cos0+2=0, where M is the mass ofM +m
the lower and m of the upper sphere.

Ex. 7. A sphere of mass M and radius a is constrained to roll on a perfectly

rough curve of any form and initially the velocity of its centre of gravity is F. If

the initial velocity were changed to V, show that the normal reaction would be

increased by M and that the friction would be unaltered, p being the radius
p-a

of curvature of the curve at the point of contact.

146. A rod OA can turn about a hinge at 0, while the end A rests on a smooth

wedge which can slide along a smooth horizontal plane through 0. Find the motion.

Let a=the inclination of the wedge, ilf=its mass and x= OC. Let Z =the length

of the beam, m= its mass and d=AOC. Let Ji=the reaction at A. Then we have

the dynamical equations,
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cPx R eina

df^ mk

and tha geometrical equation,

dt^ - M ^^^'

, Rl . cos (a - ^) - mg ^ cos
^"'

(2).

x=-— . sm(a-0) (3).
' smo ^ ' ^ '

It is obvious we must apply the second method of solution. Hence

^^^dxd'x - ,„d9 d-d
,

„d9 „„ 4 . dx , , .sdO)

The coefficient of R is seen to vanish by differentiating equation (3). Integrating

we have

M{^)\mk^{^;f=C-mglnme.

This result might have been written down at once by the principle of vis viva.

-T- \ and that of the rod M¥ ( -n ) •

If 7/ be the altitude above OC of the centre of gravity pi the rod OA,

twice the force function is (7 - 2mgy by Art. 140. Since y— ^l sin 6, this reduces

to the result already written down.

Substituting from (3) we have

( p \ /d9\*

Pii^a cos2(a-0)+mfc2J (^_j :=C-mglB\n9 (4).

If the beam start from rest when 9=§, then C=mgl sinjS.

This equation cannot be integrated any further. We cannot therefore find 9 in

terms of t. But the angular velocity of the beam, and therefore the velocity of

the wedge, is given by the above equation.

147. Two rods AB, BC are hinged together at B and can freely slide on a

smooth horizontal plane. The extremity A of the rod AB is attached by another

hinge to a fixed point on the table. An elastic string AC, whose unstretched length

is equal to AB or BC, joins A to the extremity C of the rod BC. Initially th^ two

rods and the string form an equilateral triangle and the system is started with an

angular velocity fi round A. Find the greatest length of the elastic string during the

motion. Find also the angular velocities of the rods when they are at right angles,

and the least value of that this may he possible.
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Let the length of either rod be 2a, mk^ the moment of inertia of either about its

centre of gravity, so that k^=^a^. Let D and E be the middle points of the rods,

and let (r, 6) be the polar co-ordinates of E referred to A as origin.

The only forces on the system are the reaction of the hinge at A and the tension

of the elastic string A G. If we search for any direction in which the sum of the

resolved parts of these vanishes, we can find none, since the direction of the

reaction is at present unknown. But since the lines of action of both these forces

pass through A, their moments about A vanish, and therefore, by Art, 133, the

angular momentum about A is constant throughout the motion and equal to its

initial value. Let w, w' be the angular velocities of AB, BC at any instant t. The

angular momentum oi BG about A is by Art. 134 m f r^ -j- + fc^w'
J

. The angular

momentum of AB is by the same article m {¥ + a^) w, since AB is turning about A

as a fixed point. The initial values of these are respectively m (3a^Sl + k^Si), and

do
m(F-i-a2)0, since w, J and -r are each initially equal to 0, and r is initially

equal to the perpendicular from A on the opposite side of the equilateral triangle

formed by the system. Hence

m(fc2 + a2)w + m;fc2j^' + mr2^=m(2P+4a2)i2 (1).

We may obtain another equation by the use of the principle of vis viva. The

vis viva of the rod BG is by Art. 139 m
j
(|()^ +^ (^) + *^""*| •

'^^ "^ ^^* °'

AB is by the same article m [k^ + a^) w^ since it is turning round ^ as a fixed point.

The initial values of these are respectively m (Sa^ + k^) 0^ and m (F + a^) fi^. If T be

the tension of the string, p its length at time t, the force function of the tension is

\
{-T)dp. According to the rule given in Statics to calculate virtual moments,

the minus sign is given to the tension because it acts to diminish p ; and the limits

are 2a to p because the string has stretched from its initial length 2a to p. By

n — 1a (p ~ 2a)^

Hooke's law r=E ^-p—
, so that, by integration, the force function =-E —r— - .

2a *"

K. D. 9
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The reaction at A does not appear by Art. 141. The equation of vis viva is

therefore

m (ft^+ a!^ w«+m
j
rjy+r«(^Y+ ft2a.'3|=m (2fc2+4o«)02_Ei^_?^

There are only two possible independent motions of the rods. We can tnm AB
about A and BC about B, all other motions, not compounded of these, are incon-

sistent with the geometrical conditions of the question. Two dynamical equations

are sufficient to determine these, and these we have just obtained. All the other

equations which may be wanted must be derived from geometrical considerations.

We must now express the geometrical conditions of the question. Let be the

supplement of the angle ABC, then

r2=5a2+4a2 cos^ (3).

Since -^ is the relative angular velocity of the rods BC, AB, -^ =w'- w ... (4),

.-. rj=-2a^Bm^{a'-u) (6).

Let i// be the angle EAB, then sin^=sin0 - (6),

, . d\j/ dd ,

and smce -^ = -n - "i we have
dt dt

Also from the triangle ABC p^+ 2a^=2r^ (8).

From these eight equations we can eliminate w, «', r, j-, p, xj/ and -=- . We shall

then have a differential equation of the first order to solve, containing
<f>
and -^

.

It is required to find the greatest length of the elastic string during the motion.

At the moment when p is a maximum, -f=0 and the whole system is therefore

moving as if it were a rigid body. We therefore have for a single moment w, w'

and ^ all equal to each other and ^.=0. The two first equations become, when

a^
we have substituted for P its value —

,

(5o»+3r*)w=14a20

(5a2+ 3r2) w2= 14a''Q« -^ (p
-(p-2a)«j"

Eliminating w and substituting for r from (8) we have the cubic

~E
(3p2+16a2){p-2a) =??^'(p+2a).

which has one positive root greater than 2a.

It is also required to find the motion at the instant when the rods are at right

angles. At this moment 'P=Z and hence by (3) r=a^Jb, by (5) — =—pa (w'- w),
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do 1
by (7) -^ = ^(w'+ 4w). Substituting in equations (1) and (2) we get

4w+w'=2
I

2 ma 2 J

From these two equations we may easily find w and w'. It is easily seen that the

10 Tf

values of w, w' will not be real unless fl^> .— (J^- Vp.
1 ma ^ '

We may often save ourselves the trouble of some elimination if we form the

equations derived from the principles of angular momentum and vis viva in a slightly

different manner. The rod JSC is turning round B with an angular velocity w',

while at the same time B is moving perpendicularly to AB with a velocity 2au,

The velocity of E is therefore the resultant of aw' perpendicular to BC and 2aii>

perpendicular to AB, both velocities, of course, being applied to the point E. When
we wish our results to be expressed in terms of w, w' we may use these velocities to

express the motion of E instead of the polar co-ordinates (r, 6).

Thus in applying the principle of angular momentum, we have to take the

moment of the velocity of E about A. Since the velocity 2aw is perpendicular to

AB, the length of the perpendicular from A on its direction is AB together with

the projection of BE on AB, which is 2a + a coS(t>. Since the velocity aw' is

perpendicular to BE, the length of the perpendicular from A on its line of action

is BE together with the projection of AB on BE, which is a+ 2a cos 0. Hence

the angular momentum of the rod BC about A is, by Art. 134,

wiFw' -|-27naw(2a + acos^)+ 7»aw'(a + 2acoS(^).

The principle of angular momentum for the two rods gives therefore

m(A;2+5aa+2a2 cos<^) w +m (P+a2+2a2 cos^) w'=m(2i2+4a2)0.

The right-hand side of this equation, being the initial value of the angular momen-

tum, is derived from the left-hand side by putting cos0= - \ axdna=w'=Q.

In applying the principle of vis viva, we require the velocity of E. Begarding

it as the resultant of 2aw and aw' we see that, if v be this velocity,

v^= (2aw)2+ (aw')2+ 2 . 2aw . aw' cos <p.

The initial value being found, as before, by putting cob0=-J, w=w'=0, the

principle of vis viva gives, by Art. 141,

(p-2a)2
m (Jt" -1- 5*2) w2 -t-m (

&2
-J- a^) w'2 -I- 4ma2 ww' cos^=m {2P+ 4a2) Q2 - £ ^^^^^ .

The force function is found in the same manner as before. If we join to this

equation (4) given above, and substitute /j=4a cos^ , we have just three equations

to find w, w', and </>. If these quantities are all that are required, as in the two

cases considered above, this form of solution has the advantage of brevity. When
9 is a maximum, we put w= w', when the rods are at right angles, we put cos^=0.

rhe equations then lead to the results already given.

148. The bob of a heavy pendulum contains a spherical cavity which is filled

vUh water. To determine the motion.

Let be the point of suspension, G the centre of gravity of the solid part of the

9—2
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pendulum, MK^ its moment of inertia about and let OG= k. Let C be the centre

of the sphere of water, a its radius and OC=c. Let m be the mass of the water.

If we suppose the water to be a perfect fluid, the action between it and the case

must, by the definition of a fluid, be normal to the spherical boundary. There will

therefore be no force tending to turn the fluid round its centre of gravity. As the

pendulum oscillates to and fro, the centre of the sphere will partake of its motion,

but there will be no rotation of the water.

The effective forces of the water are by Art. 131 equivalent to the effective force

of the whole mass collected at its centre of gravity together with a couple inii -r:

where w is the angular velocity of the water, and ml? its moment of inertia about

a diameter. But w has just been proved zero, hence this couple may be omitted.

It follows that in all problems of this kind where the body does not turn, or turns

with uniform angular velocity, we may collect the body into a single particle placed

at its centre of gravity.

The pendulum and the collected fluid now form a rigid body turning about

a fixed axis, hence if 6 be the angle CO a fixed line in the body makes with the

vertical, the equation of motion by Art. 89 is

(MK^+ mc^)-^^+ (Mh+ 7nc)g 8ine=0,

where in finding the moment of gravity, 0, G and C have been supposed to lie in

a straight line. The length L' of the simple equivalent pendulum is, by Art. 92,

MK^ + mc^
L'= Mh+ mc I

Let mP be the moment of inertia of the sphere of water about a diameter.

Then if the water were to become solid and to be rigidly connected with the case,

the length L of the simple equivalent pendulum would be, by similar reasoning,

~ Mh + mc

It appears that L'<L, so that the time of oscillation is less than when the

whole is solid.

149. Characteristics of a body. If we refer to the

equations of motion of a body given in Art. 135, we see that the

motion depends on (1) the mass of the body, (2) the position of

the centre of gravity, (3) the external forces, (4) the moments of

inertia of the body about straight lines through the centre of

gravity, (5) the geometrical equations. Two bodies, however
different they may really be, which have these characteristics the

same, will move in the same manner, i.e. their centres of gravity

will describe the same path, and their angular motions about their

centres of gravity will be the same. It is often convenient to use

this proposition to change the given body into some other whose
motion can be more simply found.

For example, if a sphere have an eccentric spherical cavity

filled with fluid of the same density as that of the solid sphere,
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the motion of the sphere is independent of the position of the
cavity, so that, if it be more convenient, we may put the cavity at

the centre. To prove this, we may notice that since the sphere of

fluid does not rotate, or rotates with uniform angular velocity, the

motion is unaltered by collecting the fluid into a particle placed

at its centre. This being done, the first, second, third, and fifth

characteristics are clearly independent of the position of the cavity.

As for the fourth characteristic, let a be the radius of the sphere,

h that of the cavity, c the distance of its centre from the centre

of the sphere, D the density, then the moment of inertia of the

solid part of the sphere is f7ra\ f a^ - ^irh^ -iW + ^1- The
moment of inertia of the fluid collected into its centre is |7^6^.c^

When we add these together c disappears, so that the whole

moment of inertia is independent of the position of the cavity.

The motion of a uniform triangular area moving under the

action of gravity is another example. If we replace the area by
three wires forming its perimeter but without weight, the geome-
trical conditions of the motion will in general be unaltered, and if

we also place at the middle points of these wires three weights,

each one-third of the mass of the triangle, this body will have

all its characteristics the same as that of the real triangle, and
may replace it in any problem,

Ex. 1. A triangular area at rest is struck by a blow perpendicular to its plane

at the middle point of one side, show that the instantaneous axis bisects the other

two sides ; but if the blow be delivered at a corner the instantaneous axis divides

in the ratio of three to one each of the sides which meet at that comer.

This is not strictly a motion in two dimensions, but we may deduce the results

from first principles, by taking moments about any straight line which passes

through the point of application of the blow and one of the particles.

Ex. 2. A triangular area ABC oscillates about one side AB as a horizontal

axis under the action of gravity, show that the pressures on the fixed axis are

equivalent to a vertical pressure at a point which bisects AB, and a pressure in

the plane of the triangle which bisects the distance between and the projection of

C on AB.

When a string connecting two parts of a dynamical system

passes over a rough pulley, it was formerly the custom to take

account of the inertia of rotation by replacing the pulley by

another of the same size but without mass and loaded with

a particle at its circumference. If a be the radius of the

pulley, k its radius of gyration about the centre, m its mass, the
ir.2

mass of the particle is -^ m, so that in a cylindrical pulley the
a

mass of the particle is half that of the pulley. This mass must

then be added on to the other particles attached to the string.

For example, if two heavy masses M, M' be connected by a string

passing over a cylindrical pulley of mass m, which can turn freely
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about its axis, the equation of motion is

where v is the velocity. Here the inertia of the pulley is taken

account of by simply adding — to the mass moved. If the pulley

be moveable in space as well as free to rotate, its inertia of trans-

lation is as usual taken account of by collecting the whole mass
into its centre of gravity. As this representation of the inertia of

rotation is not often used now, the demonstration of the above

remarks, if any be needed, is left to the reader.

Ex. 3. A rod AB whose centre of gravity is at the middle point C of AB has

its extremities A and B constrained to move along two straight lines Ox, Oy inclined

at right angles and is acted on by any forces. Show that the motion is the same as

if the whole mass were collected into its centre of gravity and aU the forces reduced

in the ratio 1 + -5 : 1, where 2a is the length AB and k is the radius of gyration

about the centre of gravity.

Ex. 4. A circular disc whose centre of gravity is in its centre rolls on a perfectly

rough curve under the action of any forces, show that the motion of the centre is

the same as if the curve were smooth and all the forces were reduced in the ratio

1 + -^ : 1, where a is the radius of the disc and k is the radius of gyration about

the centre. But the normal pressures on the curve in the two cases are not the

same. In any position of the disc they differ by X -^—p , where Z is the force on

the disc resolved along the normal to the rough curve.

On the stress at any point of a rod.

150. Suppose a rod OA to be in equilibrium under the actioi

of any forces, it is required to determine the action across anl
section of the rod at P. This action may be conceived to be tb^

resultant of the tensions positive or negative of the innumerabl
fibres which form the material of the rod. All these we know bi
Statics may be compounded into a single force M and a couple
acting at any point Q we may please to choose. Since each poi
tion of the rod is in equilibrium, these must also be the resultant

of all the external forces which act on the rod on one side of th^

section at P. If the section be indefinitely small it is usual
take Q in the plane of the section, and these two, the force

and the couple G, will together measure the stress* at the section.
|

* Sir W. Thomson has appropriated the word strain to the alterations of volumfl

and figure produced in an elastic body by the forces applied to it, and the wo
stress to the elastic pressures.
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If the rod be bent by the action of the forces, the fibres on
one side will all be stretched and on the other compressed. The
rod will begin to break as soon as these fibres have been suffici-

ntly stretched or compressed. Let us compare the tendencies of

the force R and the couple G to break the rod. Let A be the

area of the section of the rod, then a force F pulling the rod will

3ause a resultant force B = F, and will produce a tension in the

, fibres which when referred to a unit of area is equal to -j . The

same force F acting on the rod at an arm from P whose length

is p, will cause a couple G = Fp, which must be balanced by the

ouple formed by the tensions. Let 2a be the mean breadth of

ihe rod, then the mean tension referred to a unit of area produced

F f)
by G is of the order -j . - . Now if the section of the rod be very

small - wiU be large. It appears therefore that the couple, when
CL

t exists, will generally have much more effect in breaking the

rod than the force. This couple is therefore often taken to

oaeasure the whole effect of the forces to break the rod. The
'tendency to break" at any point P of a rod OA of very small

section is measured by the moment about P of all the forces which
3ict on either of the sides OP or PA of the rod.

The resolved part of the force R perpendicular to the rod is

3alled the shear. This is therefore equal to all the forces which
Mjt on either of the sides OP or PA resolved perpendicular to the

od.

If the rod be in motion the same reasoning will, by D'Alem-
)ert's principle, be applicable; provided we include the reversed

iflfective forces among the forces which act on the rod.

In most cases the rod will be so little bent that in finding

the moment of the impressed forces we may neglect the effects

of curvature.

If the section of the rod be not very small, this measure of

the " tendency to break " becomes inapplicable. It then becomes
aecessary to consider both the force and the couple. This does

act come within the limits of the present treatise, and the reader

is referred to works on Elastic Solids.

In the case of a string the couple vanishes and the force acts

along a tangent to the string. The stress at any point is there-

Fore simply measured by the tension.

151. A rod OA, of length 2a, and mass m, which can twm freely about one ex-

remity 0, falls under the action of gravity in a vertical plane. Find the " tendency

to break" at any point P.

Let du be any element of the rod distant u from P and on the side of P nearer
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the end A of the rod, and let OP=x. Let 6 be the angle the rod makes with the

vertical at the time t. The effective forces on du are

du, ,d^e . du, .{dey

(2u
respectively perpendicular and along the rod. The impressed force lam^g actmg

vertically downwards. The effective forces being reversed the tendency to break

at P is equal to the moment about P of all the forces which act on the part PA of

the rod. If this be called L, we have

[ du . - f du, ,

<= jm^gu sm&+ \m^{x+u)u

the limits being from «=0 to u=2a-x. Also, taking moments about 0, the

equation of motion is

4a2 d^9 . „m— -^ = - mga sm0.

Hence we easily find L=—
.^

x {2a - x)^.

The meaning of the minus sign is that the forces tend to bend PA round P in the

opposite direction to that in which 6 has been measured.

To find where the rod, supposed equally strong throughout, is most likely to

break, we must make 1/ a maximum. This gives -5-= and therefore a; =-5- . The
ax o

point required is at a distance from the fixed end equal to one-third of the length of

the rod. This point, it should be noticed, is independent of the initial conditions.

To find the shear at P we must resolve perpendicularly to the rod. If the

result be called Y, we have

dt^'

„ f du . . f du , ,¥=jm-gBme + jm^{x+u)

the limits being the same as before. This gives

^_mg sine
,^_

which vanishes when the tendency to break is a maximum, and is a maximum at

a distance from the fixed end equal to two-thirds of the length of the rod.

To find the tension at P we must resolve along the rod. If the result be called

X, and be taken positive in the direction OA, we have

V / dw a [ du, ./dey^=-jm^gcose- jm^Jx+u)(j^y

If the rod start from rest at an inclination a to the vertical, we find, by integrating

the equation of motion, ( -r-
J
=^ (cos d - cos a). Hence

X=g-|(2a-a;){-4a cosd+ 3(cosa-cos5){2a+ jc)}.

From these equations we may deduce the following results. (1) The magnitudes

of the stress couple and of the shear are independent of the initial conditions.
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(2) The magnitude of either the couple or the shear at any given point of the rod

varies as the sine of the incKnation of the rod to the vertical. (3) The ratio of the

magnitudes of the stress couples at any two given points of the rod is always the

same, and the same proposition is also true of the shear. (4) The tension depends

on the initial conditions and unless the rod start from rest in the horizontal position,

the ratio of the tensions at any two given points varies with the position of the rod.

152. A rigid hoop completely cracked at one point rolls on a perfectly rough

horizontal plane and is acted on by no forces but gravity. Prove that the wrench

couple at the point of the hoop most remote from the crack will be a maximum when-

ever, the crack being lower than the centre, the inclination of the diameter through

2
the crack to the horizon is tan~^— . [Math. Tripos, 1864.]

TT

Let w be the angular velocity of the hoop, a its radius. The velocity of any
point P of the hoop is the resultant of a velocity aca parallel to the horizontal plane

and an equal velocity au along a tangent to the hoop. The first is constant in

direction and magnitude and therefore gives nothing to the acceleration of P. The
latter is constant in magnitude but variable in direction and gives aw^ as the

acceleration which is directed along a radius of the hoop. Let A be the cracked

point, B the other end of the diameter, G the centre, the inclination of ACB to

the horizon. Let PP' be any element on the upper half of the circle, BCP=<f>.

Then the wrench couple, or tendency to break, at B is proportional to

/:
[- aor^a 8\D.<f) + g{a GO&d - a cos (^+ ^)}] ad((>= - 2a^(o^ + ga^ (cos ^tt + 2 sin ^).

2
This is a maximum when tan0=-

.

IT

Ex. 1. A semicircular wire AB of radius a is rotating on a smooth horizontal

plane about one extremity A with a constant angular velocity w. If a(p be the arc

between the fixed point A and the point where the tendency to break is greatest,

prove that tan
(f>
= Tr-(t>. If the extremity B be suddenly fixed and the extremity

A let go, prove that the tendency to break is greatest at a point P where

i t&nPBA =PBA.

Ex. 2. Two of the angles of a heavy square lamina, a side of which is o, are

connected with two points equally distant from the centre of a rod of length 2a, so

that the square can rotate about the rod. The weight of the square is equal to the

weight of the rod, and the rod when supported by its extremities in a horizontal

position is on the point of breaking. The rod is then held by its extremities in

a vertical position, and an angular velocity w is then impressed on the square.

Show that it will break if w > k/ — . [Coll. Exam.]

Ex. 3. A wire in the form of the portion of the curve r=a(l + coa0) cut off by

the initial line rotates about the origin with angular velocity w. Prove that the

tendency to break at the point ^ = x is measured by m—~- w^a^ [St John's Coll.]
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On Friction between Imperfectly Rough Bodies.

153. Components of a Reaction. When one body rolls

on another under pressure, the two bodies yield slightly, and are

therefore in contact along a small area. At every point of this

area there is a mutual action between the bodies. The elements

just behind the geometrical point of contact are on the point of

separation and may tend to adhere to each other, those in front

may tend to resist compression. The whole of the actions across

the elements are equivalent to (1) a component R, normal to the

common tangent plane, and usually called the reaction; (2) a

component F in the tangent plane usually called the friction;

(3) a couple L about an axis lying in the tangent plane and which
we shall call the couple of rolling friction ; (4) if the bodies have

any relative angular velocity about their common normal, a couple

N about this normal as axis which may be called the couple of
twisting friction.

These two couples are found by experiment to be in most cases

very small and are generally neglected. But in certain cases

where the friction forces are also small it may be necessary to take

account of them. We shall therefore consider first the laws which
relate to the friction forces as being the most important, and after-

wards those which relate to the couples.

154. Laws of Friction. In order to determine the laws

of these frictions we must make experiments on some simple

cases of equilibrium and motion. Suppose then a symmetrical

body to be placed on a rough horizontal table and acted on by a
force so placed that every point of the body is urged to move or

does move in the direction of this force. It is found that if the

force be less than a certain amount the body does not move. The
first law of friction is therefore that the friction acts in such a

direction and has such a magnitude that it is just sufficient to

prevent sliding.

Next, let the force be gradually increased, it is found by
experiment that no more than a certain amount of firiction can
be called into play, and when more is required to keep the body
from sliding, sliding will begin. The existence of this limit to

the amount of friction which can be called into play, is the

second law of friction. This amount is called limiting friction.

The third law of friction is that the magnitude of this limiting

friction is found by experiment to bear a ratio to the normsd
pressure which is very nearly constant for the same two bodies in

contact, but is changed when either body is replaced by another
of different material. This ratio is called the coefficient offriction
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of the materials of the two bodies. Its constancy is generally-

assumed by mathematicians.

Though all experimenters have not entirely agreed as to the
absolute constancy of the coefficient of friction, yet it has been
found generally that, if the relative motion of the two bodies be
the same at all points of the area of contact, the coeffijcient of
friction is nearly independent of the extent of the area of contact

and of the relative velocity.

155. Coulomb has pointed out a distinction which exists

between statical friction and dynamical friction. The friction

which must be overcome to set a body in motion relatively to

another is greater than the friction between the same bodies when
in motion under the same pressure. He found also that if the

bodies remained in contact for some time under pressure in a
position of equilibrium, the friction which must be overcome was
greater than if the bodies were merely placed in contact and
immediately started from rest under the same pressure. In some
bodies this distinction between statical and dynamical friction was
found to be very slight, in others the difference was considerable*.

The experiments of Morin in general confirmed the existence of

the distinction between the two kinds of friction. According to

some experiments of Messrs Fleeming Jenkin and J. A. Ewing,
described in the Phil. Trans, for 1877, the transition from statical

to dynamical friction is not abrupt. By means of an apparatus

which differed essentially from any previously employed they were
able to make definite measurements of the friction between sur-

faces whose relative velocity varied from about one hundredth of

a foot per second to about one five-thousandth of a foot per

second. Between the limits of these evanescent velocities the

coefficient of friction was found to be decreasing gradually from its

statical to its dynamical value as the velocity increased.

The experiments of Coulomb and Morin were made with bodies

moving at moderate velocities,but some experiments have been lately

made by Capt. Douglas Galton on the friction between cast-iron

brake blocks and the steel tyres of wheels of engines moving with

great velocities. These velocities varied from seven feet per second

to eighty-eight feet per second, i.e. five to sixty miles per hour.

Two results followed from these experiments : (1) the coefficient of

friction was very much less for the higher than the lower velocities,

(2) the coefficient of friction became smaller after the wheels had
been in motion for a few seconds. See the Report of the British

Association for the meeting in Dublin, 1878. The reader will also

* The results of Coulomb's experiments are given in his TMorie des machines

9imples, Mimoires des Savants etrangers, tome x. This paper gained the Prize of

the Aead4mie des Sciences in 1781 and was published separately in Paris, 1809.
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I

find an account of some experiments on rolling friction by Prof.

Osborne Reynolds in the Phil. Trans, for 1876.

156. When the bodies are said to be perfectly rough it is

usually meant that they are so rough that the amount of friction

necessary to prevent sliding under the given circumstances can

certainly be called into play. The coefficient of friction is there-

fore practically infinite. By the first law of friction, the amount
which is called into play is that which is just sufficient to prevent

sliding.

157. Application of the laws of Friction. Let us now
extend the theory deduced from these experiments to the case in

which a body moves or is urged to move in any manner in one

plane. It is a known kinematical theorem, which will be proved

at the beginning of the next chapter, that the motion of such a

body may be represented by supposing it to be turning round
some instantaneous centre of rotation. Let be this centre of

rotation, then any point P of the body is moving or tends to

move perpendicular to OP.

The friction at P, by the first rule just given, must also act

perpendicular to OP but in the opposite direction. If P move,

the amount of the friction at P is limiting friction and is equal

to fjbR, where R is the pressure at P and fjt, the coefficient of

friction. Thus in a moving body the direction and magnitude of

the friction at every sliding point are known in terms of the co-

ordinates of the point and the pressure at the point.

Suppose for example it were required to find the least couple

which would move a heavy disc resting by several pins on a hori-

zontal table, the pressures at the pins being known. By resolving

in two directions and taking moments about a vertical axis we
obtain three equations. From these we can find the required

couple and the two co-ordinates of 0.

It sometimes happens that coincides with one of the points

of support of the body. In this case the friction at this point of

support is not limiting. It is only just sufficient in amount to

prevent the point from sliding.

Ex. A heavy body rests by three pins A,B, C on a rough horizontal table, the

pressures at the pins being P, Q, R. If the body be acted on by a couple so that it

is just on the point of moving, show that the centre of rotation is at a point such

that the sines of the angles AOB, BOG, COA are &s R, P, Q. But if the point

thus determined does not lie within the triangle ABC, the centre of rotation coin-

cides with one of the pins.

These results follow immediately from the triangle of forces.

158. Discontinuity of Friction. The reader should par-

ticularly notice the discontinuity just mentioned. The friction at
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any point of support which slides is (juR, where R is the normal
pressure. But if the point of support does not slide, the friction

is some quantity F which is unknown, except that it must be less

than [xR. The magnitude of F must be found from the equations

of motion. This difference will often introduce a discontinuity

into the equations.

As this is important let us present the argument in a slightly

different form so as to consider the case of rolling.

Suppose a body rolls on a rough surface, the friction called

into play just prevents sliding, and is possibly variable in magni-
tude and direction. By writing down and solving the equations

of motion we can find the ratio of the friction F to the normal
pressure R. If this ratio be always less than the coefficient fi of

friction, enough friction can always be called into play to make
the body roll on the rough surface. In this case we have obtained

F
the true motion. But if at any instant the ratio p thus found

should be greater than the coefficient of friction, the point of

contact will begin to slide at that moment. In this case the

equations do not represent the true motion. To correct them we
must replace the unknown friction F by fiR, and remove the

geometrical equation which expresses the fact that there is no
slipping between the bodies. The equations must now be again

solved on this new supposition. It is of course possible that

another change may take place. If at any instant the velocities

of the points of contact become equal to each other, all the pos-

sible friction may not be called into play. At that instant the

friction ceases to be equal to fiR and becomes again unknown in

magnitude and direction.

159. Discontinuity may also arise in other ways. When, for

example, one body is sliding over another, the friction is opposite

to the direction of relative motion, and numerically equal to the

normal reaction multiplied by the coefficient of friction. If then,

during the course of the motion the direction of the normal re-

action should change sign, while the direction of motion remains

unaltered ; or if the direction of motion should change sign while

the normal reaction should remain unaltered, the sign of the

coefficient of friction must be changed. This may modify the

dynamical equations and alter the subsequent solutioa. The same
cause of discontinuity operates when a body moves in a resisting

medium, when the law of resistance is an even function of the

velocity, or any function which does not change sign when the

direction of motion is changed.

160. Indeterminate Motion. In some cases the motion
may be rendered indeterminate by the introduction of friction.
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Thus, we have seen in Art. 112, that when a body swings on two

hinges, the pressures on the hinges resolved in the direction of

the straight line joining them cannot be found. The sum of these

components can be found, but not either of them. But there

was no indeterminateness in the motion. If however these hinges

were imperfectly rough, there would be two friction couples, one

at each hinge, acting on the body. The common axis of these

couples would be the straight line joining the hinges. The mag-
nitude of each would be equal to the pressure resolved along its

axis multiplied by a constant depending on the roughness of the

hinge. If the hinges were unequally rough, the magnitude of

the resultant couple would depend on the distribution of the pres-

sure on the two hinges. In such a case the motion of the body
would be indeterminate.

161. Examples of Friction. A homogeneoiis sphere is placed at rest on a rough

inclined plane, the coefficient of friction being ix, determine whether the sphere will

slide or roll.

Let F be the friction required to make the sphere roll. The problem then

becomes the same as that discussed in Art. 144. We have, therefore, F=} tanaJB,

where a is the inclination of the plane to the horizon.

If then ^ tan a be not greater than /jl, the solution given in the article referred

to is the correct one. But if /u< f tan a the sphere wiU begin to slide on the

inclined plane. The subsequent motion will be given by the equations

d^x
m-T-j =mg sina-/ii2

0= -mg cosa+ JJ

ma -j-^-\- mk^ 372"="*^* ^^^*

whence we have, remembering that k^=ia^,

d^x , . , d?9 , g-^=g{sma-fxcosa), ^ = f/*|co8a.

Since the sphere starts from rest, we have by integration

x=igt^ {sin a -IX COS a), e=^fi-t^ cosa.

The velocity of the point of the sphere in contact with the plane is

dx do ^, . _^ - a -^f=9t (sin a -III cosa).

But since, by hypothesis, fi is less than f tana, this velocity can never vanish.

The friction therefore will never change to rolling friction. The motion has thus

been completely determined.

162. A homogeneous sphere is rotating about a horizontal diameter^ and is gently

placed on a rough horizontal plane, the coefficient of friction being fx. Determine

the subsequent motion.

Since the velocity of the point of contact with the horizontal plane is not zero,

the sphere will evidently begin to slide, and the motion of its centre will be along

a straight line perpendicular to the initial axis of rotation. Let this straight line be
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taken as the axis of x, and let d be the angle between the vertical and that radius of

the sphere which was initially vertical. Let a be the radius of the sphere, mfc^ its

moment of inertia about a diameter, and 12 the initial angular velocity. Let It be

the normal reaction of the plane. Then the equations of motion are clearly

0=mg-B (1).

whence we have
dF'"''^' dt^^'^^l ^

^'

do
Integrating, and remembering that the initial value of -r. is 0, we have

x=^IJ^gt^, e=0«-fM-«^ (3).

But it is evident that these equations cannot represent the whole motion, for

dx
they would make -^ , the velocity of the centre of the sphere, increase continually,

at

This is quite contrary to experience. The velocity of the point of the sphere in

contact with the plane is

dx dd _

dt dt

This vanishes at a time ^=f— (4)-
^ ^ /J-9

At this instant the friction suddenly changes its character. It now becomes

only of sufficient magnitude to keep the point of contact of the sphere at rest. Let

F be the friction required to effect this. The equations of motion will then be

d^'^^F
1

dt^

.(5).0=mg-R

and the geometrical equation will be x—ad.

Differentiating this twice, and substituting from the dynamical equations, we
get jF(a2 + F)=0, and therefore F—0. That is, no friction is required to keep

the point of contact of the sphere at rest, and therefore none will be called into

play. The sphere will therefore move uniformly with the velocity which it had

at the time t^ . Substituting the value of t^ in the expression for -r- obtained from

equations (3) we find that this velocity is fa(2. It appears therefore that the

sphere will move with a uniformly increasing velocity for a time f— and will

then move uniformly with a velocity ^aQ. It may be remarked that this velocity

is independent of /*.

If the plane be very rough, n is very great and the time t^ is very small. Taking

the limit when fi is infinite we fijid that the sphere begins immediately to move with

its uniform velocity.
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163. In this investigation the couple of rolling friction has been neglected.

Its effect would be to diminish the angular velocity. The velocity of the lowest

point of the sphere would then tend to be no longer zero, and thus a small sliding

friction will be required to keep that point at rest. Suppose the moment of the

friction-couple to be measured hjfmg, where/ is a constant. Introducing this into

the equations (5) the third is changed into

mfc2 —2= -Fa-fmg,

the others remaining unaltered. Solving these as before we find

afing

a^+ k^'

We see from this that F is negative and retards the sphere. The effect of the

couple is to call into play a friction-force which gradually reduces the sphere to

rest.

As the sphere moves in the air we may wish to determine the effect of its resist-

ances. The chief part of this resistance may be pretty accurately represented by

a force m/3 — acting at the centre in the direction opposite to motion, v being the

velocity of the sphere and ^ a constant whose magnitude depends on the density of

the air. Besides this there will be also a small friction between the sphere and air

whose magnitude is not known so accurately. Let us suppose it to be represented

by a couple whose moment is myv^ where 7 is a constant of small magnitude. The

equations of motion can be solved without difficulty, and we find

tan-. ^/^y-t.n-W^/^y= -^-^/Sf±§Mt,

where F is the velocity of the sphere at the epoch from which t is measured.

164. Friction couples. In order to determine by experi-

ment the magnitude of rolling friction, let a cylinder of mass M
and radius r be placed on a rough horizontal plane. Let two
weights whose masses are P and P+^ be suspended by a fine

thread passing over the cylinder and hanging down through a slit

in the horizontal plane. Let F be the force of friction, L the

couple at the point of contact A of the cylinder with the horizontal

plane. Imagine^ to be at first zero, and to be gradually increased

until the cylinder just moves. When the cylinder is on the point

of motion, we have by resolving horizontally F= and by taking

moments L =pgr. Now in the experiments of Coulomb and Morin

J) was found to vary as the normal pressure directly, and as r
inversely. When p was great enough to set the cylinder in motion,

Coulomb found that the acceleration of the cylinder was nearly

constant, and thence we may conclude that the rolling friction was
independent of the velocity. M. Morin found that it was not in-

dependent of the length of the cylinder.

The laws which govern the couple of rolling friction are similar

to those which govern the force of friction. The magnitude is

just sufficient to prevent rolling. But no more than a certain

1
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amount can be called into play, and this is called the limiting

rolling couple. The moment of this couple bears a constant ratio

to the magnitude of the normal pressure. This ratio is called the

coeficient of rolling friction. It depends on the materials in con-
tact, it is independent of the curvatures of the bodies, and, in

in some cases, of the angular velocity.

No experiments seem to have been made on bodies which
touch at one point only and have their curvatures in all direc-

tions unequal. But since the magnitude of the couple is inde-

pendent of the curvature, it seems reasonable to assume that the
axis of the rolling couple, when there is no twisting couple, is the

instantaneous axis of rotation.

165. In order to test these laws of friction let us us compare
the results of the following problem with experiment.

Friction of a carriage. A carriage on n pairs of wheels is dragged on a level

horizontal plane by a horizontal force 2P with uniform motion. Find the magnitude

of P.

Let the radii of the wheels be respectively r^, r^, &c., their weights «?!, Wj, &c.,

and the radii of the axles p^, pj, &c. Let 2W he the whole weight of the carriage,

2Qi, 2Q2, &G. the pressures on the several axles, so that W='ZQ. Let the pressures

between the wheels and axles be Ei, iJj, &c. and the pressures on the ground

El, E2', &G. Let C be the common centre of any wheel and axle, B their point of

contact, and A the point of contact of the wheel with the ground. Let the angle

ACB = supposed positive when B is behind AG. Let fi be the coefficient of the

force of sliding friction at B and / the coefficient of the couple of roUing friction

at A . The equations of equilibrium for any wheel, found by resolving vertically

and taking moments about A, are

E'=Q + w (1),

- fiE{r cose- p)-ErBm 6=fE' (2).

The friction force at A does not appear because we have not resolved horizontally.

The equations of equilibrium of the carriage, found by resolving vertically and

horizontally, are

E cose+iJ.E Bme= Q (3),

I^{Eam8-(iEco80)+P=O (4).

The effective forces have been omitted because the carriage is supposed to move

uniformly, so that the M-j- oi the carriage and the mk^ — of the wheel are both

zero. The first three of these equations give by eUminating E and E'

fji. (
cos ^ - -

j
- sin

cosd + fi sind 4{'u) <^'-

This gives the value of 6. In most wheels ~ and -x are both small as well as /. In
r y

such a case /j. cos 5- sin^ is a small quantity. If therefore /j.—ta.Tie we have 6= €

very nearly. The third and fourth of these equations give by eliminating E

fj.smd + Gos9^ {fisinO+cose r ^ r
^^

R. D. 10
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by equation (5). If ^ be small, it •vriU be sufficient to substitute for ff in the first

term its approximate value e. This gives

P=s|Bine^(3+/^| (6).

Here we have neglected terms of the order ( - ) Q-

If all the wheels are equal and similar we have, since SQ= JT,

P=sine-^ W+f ^^"-^
(7).

Thus the force required to drag a carriage of given weight with any constant

velocity is very nearly independent of the number of wheels.

In a gig the wheels are usually larger than in a four-wheel carriage, and there-

fore the force of traction is usually less. In a four-wheel carriage the two fore

wheels must be small in order to pass under the carriage when turning. This will

cause the term sine— Q, in the expression for P containing the radius r, of the

fore wheel to be large. To diminish the effect of this term, the load should be so

adjusted that its centre of gravity is nearly over the axle of the large wheels, the

pressure Q^ in the numerator of this term wiU then be small.

A variety of experiments were made by a French engineer, M. Morin, at Metz

in the years 1837 and 1838, and afterwards at Courbevoie in 1839 and 1841, with

a view to determine with the utmost exactness the force necessary to drag carriages

of different kinds over the ordinary roads. These experiments were undertaken by

order of the French Minister of War, and afterwards under the directions of the

Minister of Public "Works. The effect of each element was determined separately,

thus the same carriage was loaded with different weights to determine the effect of

pressure and dragged on the same road in the same state of moisture. Then the

weight being the same, wheels of different radii but the same breadth were used,

and so on.

The general results were that for carriages on equal wheels, the resistance varied

as the pressure directly and the diameter of the wheels inversely, and was independent

of the number of wheels. On wet soils the resistance increased as the breadth of

the tire was decreased, but on solid roads the resistance was independent of the

breadth of the tire. For velocities which varied from a foot pace to a gallop, the

resistance on wet soils did not increase sensibly with the velocity, but on solid roads

it did increase with the velocity if there were many inequalities on the road. As
an approximate result it was foimd that the resistance might be expressed by a

formula of the kind a+ hV, where a and h are two constants depending on the

nature of the road and the stiffness of the carriage, and V is the velocity.

M. Morin's analytical determination of the value of P does not altogether agree

with that given here, but it so happens that this does not materially affect the

comparison between theory and observation. See his Notions FondamentaUs de

Mecanique, Paris, 1855. It is easy to see that M. Morin's experiments tend to con-

firm the laws of rolling friction stated in a previous article.

166, Problems on Friction. Ex. 1. A homogeneous sphere is projected

without rotation directly up an imperfectly rough plane, the inclination of which

II
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to the horizon is a, and the coefficient of friction ft. Show that the whole time

during which the sphere ascends the plane is the same as if the plane were smooth,

and that the time during which the sphere sUdes is to the time during which it

,, 2 tana ,
roUs as ^ : 1.

7 /J.

Ex. 2. A homogeneous sphere of mass M is placed on an imperfectly rough

table, the coefficient of friction of which is yu. A particle of mass m is attached to

the extremity of a horizontal diameter. Show that the sphere wiU begin to roll or

shde according as fi is greater or less than -.,-, ..^.J" ., , . If u be equal to
7JiP+ 17Mm+ 5m^ ^

this value, show that the sphere will begin to roll.

Ex. 3. A rod AB has two small rings at its extremities which slide on two
rough horizontal rods Ox, Oy at right angles. The rod is started with an angular

velocity when very nearly coincident with Ox. Show that if the coefficient of

friction is less than J2, the motion of the rod is given byg= -

~^
log ( 1 + ^

„ )

2
nntil tan6= — , and that when the rod reaches Oy, its angular velocity is w, where

"What is the motion il fi^>2?

167. Rigidity of Cords. After using the apparatus de-

scribed in Art. 164, with a fine cord to determine the laws of

friction, Coulomb replaced the cord by a stiffer one and repeated

his experiments with a view to obtain a measure of the rigidity of

cords. His general result may be stated as follows. Suppose a

cord ABCD to pass over a pulley of radius r, touching it at B and
C, and moving in the direction ABGD. Then the rigidity may
be represented by supposing the cord perfectly flexible and the

tension T of the portion AB of the cord which is about to be
rolled on to the pulley to be increased by a quantity R. This

I

r /TT

force R measures the rigidity. The quantity R is equal to
,

where a and h are constants, which depend on the nature of the

cord.

It appears therefore that in the equation of moments about
the axis of the pulley, the rigidity of the cord which is being wound
on to the pulley is represented by a resisting couple whose magni-
tude is a + hT, where T is the tension of the cord which is being
bent, and a, h are two constants which depend on the nature of

the cord. The rigidity of the cord which is being unwound will

be represented by a couple whose magnitude is a similar function

of the tension of that cord. But as its magnitude is very much
less than the first, it is generally omitted.

Besides the experiments just alluded to. Coulomb made many
others on a different system. He also constructed tables of the

10—2
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values of a and h for ropes of different kinds. The degrees of

dryness and newness and the number of independent threads

forming the cord were all considered. Rules were given to com-

pare the rigidities of cords of different thicknesses.

On Impulsive Forces.

168. Equations of motion. In the case in which the

impressed forces are impulsive the general principle enunciated in

Art. 131 of this chapter requires but slight modification.

Let {u, v), (u, v) be the velocities of the centre of gravity of

any body of the system resolved parallel to any rectangular axes H
respectively just before and just after the action of the impulses, flj

Let CO and a be the angular velocities of the body about the centre
'

of gravity at the same instants. And let Mk^ be the moment of

inertia of the body about the centre of gravity. Then the effective

forces on the body are equivalent to two forces measured by
M (u — u) and M {v — v) acting at the centre of gravity parallel

to the axes of co-ordinates together with a couple measured
by M¥{co'-<o).

The resultant effective forces of all the bodies of the system

may be found by the same rule. By D'Alembert's principle

these will be in equilibrium with the impressed forces. The
equations of motion may then be found by resolving in such

directions and taking moments about such points as may be found

most convenient.

In many cases it will be found that by the use of Virtual

Velocities the elimination of the unknown reactions may be
effected without difficulty.

169. We notice that these expressions for the effective forces

depend on the difference of the momenta just before and just

after the action of the impulses. We may therefore conveniently

sum up the equations obtained by resolving in any direction, and
taking moments about any point in the two following forms

:

/Res. Lin. Mom.\ /Res. Lin. Mom.N _ /Resolved

\

V after impulse / V before impulse/
~"

V impulse /
'

/Ang. Momentum\ /Ang. Momentum\ _ /Moment of\

V after impulse / V before impulse /
"~

V impulse /
*

An elementary proof of these two results is given in Art. 87.

The expression for the Linear Momentum is given in Art. 75,

and the various expressions used for Angular Momentum are

given in Art, 1.34.
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When a single blow or impulse acts on a system, we may
conveniently take moments about some point in its line of action.

We thus avoid introducing the impulse into the equations. We
then deduce from the equations of moments that the angular
momentum of a system about any point in the line of action of an
impulse is unaltered by that impulse.

170. Ex. A string is wound round the circumference of a circular reel, and the

free end is attached to a fixed point. The reel is then lifted up and let fall so that

at the movient when the string becomes tight it is vertical, and a tangent to the reel.

The whole mation being supposed to take place in one plane, determine the effect of

the impulse.

The reel in the first instance falls vertically without rotation. Let v be the

velocity of the centre at the moment when the string becomes tight; v', u' the

velocity of the centre and the angular velocity just after the impulse. Let T be

the impulsive tension, m/c^ the moment of inertia of the reel about its centre of

gravity, a its radius.

In order to avoid introducing the unknown tension into the equations of motion,

let us take moments about the point of contact of the string with the reel; we
then have

m{v'-v)a + mk^b}'=0 (1).

Just after the impact the part of the reel in contact with the string has no

velocity. Hence v'-aw'=0 (2).

Solving these we have w' = -^—^ • If the reel be a homogeneous cylinder

Q,2 2 V 2
Ji^ = -^, and in this case we have w'=k -> v'= o''^.

If it be required to find the
^ 6 a o

impulsive tension, we have resolving vertically

m{i/-v)=-T (3).

Hence ^~^ "*^*

To find the subsequent motion. The centre of the reel begins to descend

vertically, and there is no horizontal force on it. Hence it will continue to descend

in a vertical straight line, and throughout all the subsequent motion the string is

•vertical. The motion may therefore be easily investigated as in Art. 144. If we
put a—^ir, and let F= the finite tension of the string, it may be shown that F=one-

third of the weight, and that the reel descends with a uniform acceleration = ^g.

The initial velocity of the reel has been found in this article =i/, so that the space

1 2
descended in a time t after the impact is=v't+ ^ . - gt^.

171. Impact of a single Inelastic body. A disc of any
form is moving in its own plane in any manner. Suddenly a point

is seized and made to move in some given manner. Find the

initial motion of the disc.

Let Ox, Oy be two directions at right angles to which it is

convenient to refer the motion. As explained in Art. 168, let

(w, v) be the resolved velocities of the centre of gravity G in these
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directions and « the angular velocity of the body just before the

motion of is changed. Thus if Ox can be chosen conveniently

parallel to the direction of the motion of the centre of gravity we
have the simplification v = 0.* Let {ii, v) be the resolved velocities

of the centre of gravity in the same directions and &>' the angular

velocity just after the change. Let {x, y) be the co-ordinates of

the centre of gravity referred to the axes Ox, Oy at the instant of

the change, and let 0Q = r.

Since the angular momentum of the body about the point of

space through which is passing is unchanged by the blow, we
have by Art. 134,

M (xv' - yu + h^o)') = M{xv-yu + Fco).

Let {V, V) be the resolved parts of the velocity of just

after the change. Then we have by Art. 137,

u = U' — yw, v' = F' 4 xa>.

From these three equations we easily find

{F-^r") co' = x{v- V) -y iu- TJ') + Fo.

If the point he suddenly fixed we have TJ' = 0, V = 0, and
then we find

{k^ + r^) w =xv — yu-\- Wta.

Comparing these two results we see (what indeed is obvious

otherwise) that when is suddenly made to move in any given

manner the initial angular velocity of the body is the same as

when is reduced to rest, provided we subtract from the resolved

velocities of G before the change, the resolved velocities of after

the change.

Let {TJ, V) be the resolved velocities of just before the

change, then by Art. 137 we have u = TJ — ya, v= V+X(o. Sub-
stituting for u and v we find

{k' + r'} {(o' -co) ^x{V- V) - y {U- U'}.

This result may be conveniently put into the form of a rule. If
1j,L' be the moments of the velocity of about G jttst before and
just after the change and k' be the radius of gyration about 0, then

L'-L
^ -*« = —p--

Another demonstration which leads directly to this result will be
given a little further on in this chapter under the heading relative

motion.
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172. To find the blow at necessary to produce the given

change.

Let XF be the componeiits of the blow parallel to the axes

Ox, Oy. Then by Art. 168, we have resolving parallel to the

axes

M{v:~u) = X, if(v'-w) = F.

If we take the axis of x to pass through the centre of gravity,

we have 2/ = 0. We then find by substitution

X=-M{u-U'), Y=M.iJ^{rco-v+r).

Let {U^, V^ be the resolved velocities of in the directions OG
and perpendicular to OG just before the change; (Z7/, F/) the

resolved velocities after the change, then U^ = u and V^ = v — r(tj

by Art. 137. Hence these formulae become

x=M{u;-u:), Y=^M^M{v;-v;),

where {X, Y) are the resolved parts of the blow at in the

directions in which U^ and F^ are measured and r=OG.

173. Ex. 1. A circular area is turning about a fixed point A on its circum-

ference, suddenly A is loosed and another point B also on the circumference is

fixed. If AB is a quadrant show that the angular velocity is reduced to one-third

of its value. If AB is a third of the circumference the area is reduced to rest.

Ex. 2. A disc of any form is moving in any manner. Suddenly the motion of

a point is changed, show that the increase of vis viva is equal to

•where IF, W are the resultant velocities of just before and just after the change;

p, p' the perpendiculars from the centre of gravity on the directions of motion of 0,

and the rest of the notation is the same as before.

If be reduced to rest and the loss of vis viva is to be a given quantity, then

must lie on a certain conic which becomes two coincident straight lines when the

whole vis viva is lost.

174. Examples of different kinds of Impacts. Ex. 1. An inelastic sphere

of radius a, sliding with a velocity F on a smooth horizontal plane, impinges on

a perfectly rough fixed point or peg at a height c above the plane. Show (1) that

/ w' + k^
unless the velocity F be greater than . / 2gc nj the sphere will not jump over

V \^~ ^j

the peg. Supposing the velocity F to have this value show (2) that unless - be

a^ + k^
less than —^— the sphere wiU immediately leave the peg. In this latter case

show (3) that the sphere will again hit the peg after a time t, given by the lesser
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root of the equation ^gH^+Uainagt+U^-agcosa^O, where U^=2gc -^—w *^^

c
cos = 1— . Show also that the roots of this quadratic are real and positive.

Ex. 2. A rectangular parallelopiped of mass 3m, having a square base A BCD,
rests on a horizontal plane and is moveable about CD as a hinge. The height of

the solid is 3a and the side of the base a. A particle m moving with a horizontal

velocity v strikes directly the middle of that vertical face which stands on AB and

lodges there without penetrating. Show that the solid will not upset unless

iP>^ga. [King's CoU.]

Ex. 3. A vertical column in the form of a right circular cylinder rests on

a perfectly rough horizontal plane. Suddenly the plane is jerked with a velocity V
in a direction making an angle e with the horizon. Show that the column wiU not

be overturned unless (1) the direction of jerk be such that a parallel to it drawn

through the centre of gravity does not cut the base, and (2) the velocity of jerk

must be greater than U, where U is given by U^= ^ gl (15 + co8^ 6)—^rm—x*° * cos-(^ + e)

Here 21 is the length of a diagonal of the cylinder and is the angle any diagonal

makes with the vertical.

Ex. 4. If the velocity of the jerk of the horizontal plane be exactly equal to U,

find the vertical pressure of the cylinder on the plane. Show that the cylinder

will Bot continue to touch the plane during the whole ascent of the centre of

gravity unless 1 + ^ sin^<3 cos^. What is the general character of the motion

if this condition is not satisfied ?

Let the cylinder touch the ground at the point A of the rim, and let (p be the

angle the diagonal through A makes with the vertical. Then by the principle of

vis viva we have

{k^+ l')(^^^y=C-2glcosi>,

where k-= l-{^ cos^^+ J sin^^), by Art. 18, Ex. 8. If the angular velocity of the

cylinder vanishes when the centre of gravity is at its highest we have C=2gl. Lte

mR be the vertical reaction at A, where m is the mass of the cylinder. Then

-^ {I cos ^) =22 - g. From these equations we find
d(

fc'+ P
B--j^=3 cosV-2 co80+i 0083^+ J sin^^.

9''

If R vanish we have cos0=|^(l±J sin^). In order that R may keep one sign both

these values of must be excluded by the circumstances of the case, i e. both these

values of (p must be greater than 0. This leads to the result given above.

175. Earthquakes. These two problems are interesting from their connection

with Mallet's theory of earthquakes. Let us suppose that the action of an earth-

quake on any building may be represented by such a motion of the base as that

of the plane just described. Then the direction and magnitude of the equivalent

jerk are both independent of the building operated on, and depend only on the

nature of the earthquake at the place.

On these principles Mr Mallet has constructed a seisometer of great simpUcity.

A set of six right cylinders are turned in some hard material such as boxwood.

I
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The cylinders are all of the same height but vary in diameter. They stand upright

on a plank fixed to a level floor in the order of their size, with a space between

each pair greater than their height, so that when one falls it does not strike its

neighbour. When a shock passes some of the cylinders are overturned and some

left standing. Suppose the jerk knocks over the narrow based cyhnders 4, 5, 6,

leaving the broader based cylinders 1, 2, 3 standing, then the jerk must have been

greater than that required to overturn cylinder No. 4, but not great enough to

overturn cylinder No. 3.

It is possible to obtain the exact time at which the shock commences by con-

necting the narrowest based cylinder with the pendulum of a clock so as to stop

it at the instant of overthrow.

Mr Mallet proposed to use two sets of cylinders, but for this we refer the reader

to the article Earthquake in the Encyclopcedia Britcmnica, 9th edition.

The formula used is that given in Ex. 3, which is ascribed by Mr Mallet to

Dr Haughton. The value of e is small when the origin or focus of the earthquake

is distant, so that as a first approximation we may put e=0. It does not appear

to have been noticed that if we are to use this formula for the standing cylinders

they must be such as to satisfy the conditions given in Ex. 4.

In December, 1857, an earthquake of great violence occurred in the southern

provinces of Italy. Mr Mallet visited the place early in the next year for the

express purpose of determining the circumstances of the shock. The problem to

be solved was to some extent a mechanical one. Given the positions of the over-

turned columns and buildings, find the depth and position of the focus or origin of

the earthquake, the velocity of the earthquake wave, and the magnitude of the

jerk at any place. In this case the depth of the focus was about three miles

below the surface of the earth, the velocity of the wave was about 800 feet per

second, while the velocity of jerk, which upset several bmldings, was as little as

12 feet per second. This last is about the same velocity as that acquired by a

particle falling from rest under gravity through a height between two and three

feet. The Great Neapolitan Earthquake of 1857. Two volumes, 1862, by R. Mallet.

Some recent experiments in connection with earthquakes are described in the

Proceedings of the Royal Society for Dec. 1881. The velocities and ampUtudes of

the waves of direct and transverse vibration were separately determined. The

motion of a point on the earth's surface was found to be such as would result from

the composition of two harmonic motions of different periods and in different

directions.

176. Impact of a Compound Inelastic body. Four equal rods each of length

2a and mass m are freely jointed so as to form a rhombus. The system falls from

rest with a diagonal vertical under the action of gravity and strikes against a fixed

horizontal inelastic plane. Find the subsequent motion.

Let AB, BC, CD, DA be the rods and let AC be the vertical diagonal impinging

on the horizontal plane at A. Let V be the velocity of every point of the rhombus
just before impact and let a be the angle any rod makes with the vertical.

Let u, V be the horizontal and vertical velocities of the centre of gravity and ci;

the angular velocity of either of the upper rods just after impact. Then the

effective forces on either rod are equivalent to the force m{v -V) acting vertically

and mu horizontally at the centre of gravity and a couple mk^u tending to increase

the angle o. Let R be the impulse at C, the direction of which by the rule of
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symmetry is horizontal. To avoid introducing the reactions at B into our eqnatioiu^|

let us take moments for the rod BC about B and -we have

Tnk^w + m{v -V)a sina -mua cosa= -R.2a cosa (1)

Each of the lower rods wiU begin to turn round its extremity 4 as a fixed point.

If w' be its angular velocity just after impact, the moment of the momentum about

A just after impact will be m (k"^+ a^) u' and just before will be mVa sina. The

difference of these two is the moment about A of the effective forces on either of

the lower rods. We may now take moments about A for the two rods AB, BC
together and we have

m{k'^ + a^)(o'-mVa siaa-mk^u+m{v-V)a sina+mu.Ba C0Ba=EAa cosa... (2)

The geometrical equations may be found thus. Since the two rods must make

equal angles with the vertical during the whole motion we have

w'= u (3).

Again, since the two rods are connected at B the velocities of the extremities

of the two rods must be the same in direction and magnitude. Resolving these

horizontally and vertically, we have

u + au C03a=2au' cosa (4),

v-au sina=2aw' sina (5).

These five equations are sufficient to determine the initial motion.

Eliminating R between (1) and (2), substituting for u, v, u' in terms of w from
*'

the geometrical equations, we find

_3 Tsing
" 2'a{l + 3 sin2a) ^'

e

I

'^1In this problem we might have avoided the introduction of the unkno'

reaction R by the use of Virtual Velocities. Supposing we give the system such

a displacement that the inclination of each rod to the vertical is increased by the

same quantity 5a. Then the principle of Virtual Velocities gives

mh-wSa -m{v-V)S (3a cos a) + mw5 (a sin a) +m (P+ o^) u'da +mV5 (a cos a) = 0,

which reduces to

(2h^-\-a^)<t) -Va sina + 3 {v —V)a sino + t(a cosa=0,

and the solution may be continued as before.

Ex. 1. Prove that the rhombus loses by the impact =

—

„ . „ of its
1 + 3 sin'a

momentum.

Ex. 2. Show that the direction of the impulsive action at the hinges B or D

makes with the horizon an angle whose tangent is —r
.

tana

To find the subsequent motion. This may be found very easily by the method

of Vis Viva. But in order to illustrate as many modes of solution as possible,

we shall proceed in a different maimer. The effective forces on either of the

upper rods will be represented by the differential coefficients m^-, tn-^- , mk^ -^ ,

at at at

and the moment for either of the lower rods will be m{k'^ + a^)-j- . Let $ be the
at
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angle any rod makes with the vertical at the time t. Taking moments in the same

way as before, we have

,„dw dv . „ du „ T^ „ /, • ^ /-.»»
mk^-r- +m-r a Bm 6- m^r d- cos&= -R.2a cos9 + mga sm.9 (1)

,

at dt at ^

ni(k^+ a^)-r- —mk^—- +m— a sind + m-y- .3aco3d=RAaooad + 2mgawa.d...(2)'.
^

at dt dt dt
i> \ I

The geometrical equations are the same as those given above, with 6 written

for a. Eliminating R and substituting for u, v, we get

(2i*+o2) ^ + a2 jg sin ^ ^ (w sLq^) + cose 3- (w cose)| =4iga sin^;

dd
multiplying both sides by a>=-5- and integrating, we get

{2 {i?+ a^ + 8a2 Bm^0}uP=C- 8ga cos 6.

Initially when 0=a, w has the value given by equation (6). Hence we find

that the angular velocity w when the inclination of any rod to the vertical is 6

is given by

(1+3 sm'e) w2=^ . .^f'"'. + ^ (costt - cos 6).^ ' 4a2 1 + 3 sin^a a ^ '

111. Ex. 1. A square is moving freely about a diagonal with angular velocity w,

when one of the angular points not in that diagonal becomes fixed ; determine the

impulsive pressure on the fixed point, and show that the instantaneous angular

velocity will be - . [Christ's Coll.]

Ex. 2. Three equal rods placed in a straight line are jointed by hinges to one

another ; they move with a velocity v perpendicular to their lengths ; if the middle

point of the middle one become suddenly fixed, show that the extremities of the

other two will meet in a time ^ , a being the length of each rod. [Coll. Exam.]

Ex. 3. The points ABCD are the angular points of a square ; AB, CD are two

qual similar rods connected by the string BG. The point A receives an impulse

in the direction AD, show that the initial velocity of A is seven times that of the

point D. [Queens* CoU.]

Ex. 4. A series of equal beams AB, BC, CD is connected by hinges; the

beams are placed on a smooth horizontal plane, each at right angles to the two

adjacent, so as to form a figure resembling a set of steps, and an impulse is given

,t the end A along AB : determine the impulsive action at any hinge. [Math,

rripos.]

Result. If X„ be the impulsive action at the n}^ angular point, show that

Xa^i - 5X,^ - 2Zj,^3=0 and X^+^ - 5X^+^ - 2Z2„=0. Thence find Z„.

178. Tlie kick before and behind. A free lamina of any form is turning in

its own plane about an instantaneous centre of rotation S and impinges on an

bstacle at P, situated in the straight line joining the centre of gravity G to S. To

%nd the point P when the magnitude of the blow is a maximum*.

* Poinsot, Sur la percussion des corps, Liouville's Journal, 1857; translated in

the Annals of Philosophy, 1858.
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First, let the obstacle P be a fixed point.

Let GP=x, and let R be the force of the blow. Let SG= h, and let w, w' be t!

angular velocities about the centre of gravity before and after the impact. Then ha

is the linear velocity of G just before the impact; let v' be its linear velocity just

after the impact. We have the equations

'^-"=W' ^-^^"=-1 W'

and supposing the point of impact to be reduced to rest,

v'+ x(a'=0 (2).

Substituting for a' and v' from (1) in equation (2), we get

This is to be made a maximum. Equating to zero its differential coefficient

with respect to x, we get

x''+ 2/ix-fc2=0; .-. x=-h^jW+¥ (3)

One of these values of x is positive and the other negative. Both these corre-

spond to maximum points of percussion, but opposite in direction. Thus there is

a point P with which the body strikes in front and a point P' with which it strikes

in rear of its own translation in space more forcibly than with any other point.

Ex. 1. Show that the two points P, P' are equally distant from S, and if be

the centre of oscillation with regard to fif as a centre of suspension, SF^= SG . SO.

Ex. 2. If P be made a point of suspension, P' is the corresponding centre of

oscillation. Also PP" is harmonically divided in G and 0.

Ex. 3. The magnitudes of the blows at P, P" are inversely proportional to their

distances from G.

Secondly, let the obstacle be a free particle of mass m.

Then, besides the equations (1), we have the equation of motion of the particle

R
m. Let V be its velocity after impact, .*. V'=— .m

The point of impact in the two bodies will have after impact the same velocity,

hence instead of equation (2) we have V'=v' + xu'.

Eliminating w', i/, V, we get B =Mu . k^ . y-.— ,-.,
'—s

.

(ilf+m)A;*+ wwr»

This is to be made a maximum. Equating to zero its differential coefficient

with respect to x, we find

.= -h^Jh^^U^(l^l) (4).

V
This point does not coincide with that found when the obstacle was fixed, unless

m is infinite. To find when it coincides with the centre of oscillation, we must put

jlf x-^h
k^=xh. This gives — =—— , or if l=x + hhe the length of the simple equivalent

M I R
pendulum, — = -. Since F'=— , it is evident that when P is a maximum V is

m h m
a maximum. Hence the two points found by equation (4) might be called the

centres of greatest communicated velocity.
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There are other singnlar pomts in a moving body whose positions may be

found ; thus we might inquire at what point a body must impinge against a fixed

obstacle, that ^rst the linear velocity of the centre of gravity might be a maximum,
or secondly, that the angular velocity might be a maximum. These points,

respectively, have been called by Poinsot the centres of maximum Reflexion and

Conversion. Referring to equations (1), we see that when v' is a maximum R is

either a maximum or a minimum, and hence it may be shown that the first point

coincides with the point of greatest impact. When w' is a maximum, we have to

Rx l?
make a - r—j^=maximum. Substituting for R, this gives a^-2 - a:-i^= 0. If

be the centre of oscillation, we have G0 = -- . Let this length be represented by h'.

Then this equation becomes

x^-2h'x-k'^= (5).

The roots of this equation are the same functions of h' and Jc that those of

equation (3) are of h and k, except that the signs are opposite. Now S and

are on opposite sides of G, hence the positions of the two centres of maximum
Conversion bear to and G the same relation that the positions of the two centres

of maximum Reflexion do to S and G. If the point of suspension be changed

from S to 0, the positions of the centres of maximum Reflexion and Conversion

I

are interchanged.

I
Ex. A free lamina of any form is turning in its own plane about an instanta-

neous centre of rotation S and impinges on a fixed obstacle P, situated in the

straight line joining the centre of gravity G to S. Find the position of P, first,

that the centre of gravity may be reduced to rest, secondly, that its velocity after

impact may be the same as before but reversed in direction.

Result. In the first case, P coincides either with G or with the centre of oscil-

lation. In the second case the points x= GP are found from the equation

2 ^ .^' n

where SG—h. [Poinsot.]

179. Elastic smooth bodies. Two bodies impinge on each
other, to explain the nature of the action which takes place between
them.

When two spheres of any hard material impinge on each
. other, they appear to separate almost immediately, and a finite

I' change of velocity is generated in each by their mutual action.

This sudden change of velocity is the characteristic of an im-
pulsive force. Let the centres of gravity of the spheres be
moving before impact in the same straight line with velocities

u and V. Then after impact they will continue to move in the
same straight line, and let u, v be the velocities. Let m, m' be
the masses of the spheres, R the action between them, then we
have by Article 168,

r> r>

(!)
B R

u —u = , V —v = —,
m m



158 MOTION m TWO DIMENSIONS.

These equations are not sufficient to determine the three quan-

tities u, v, R. To obtain a third equation we must consider what
takes place during the impact.

Each of the balls will be slightly compressed by the other, so

that they will no longer be perfect "spheres. Each also will, in

general, tend to return to its original shape, so that there will be

a rebound. The period of impact may therefore be divided into

two parts. First, the period of compression, while the distance

between the centres of gravity of the two bodies is diminishing,

and secondly the period of restitution, while the distance between
the centres of gravity is increasing. At the termination of this

second period the bodies separate.

The arrangement of the particles of a body being disturbed by
impact, we ought to determine the relative motions of the several

parts of the body. Thus we might regard each body as a collec-

tion of free particles connected by their mutual actions. These
particles being thus set in motion might continue always in motion
oscillating about some mean positions.

It is however usual to assume that the changes of shape and
structure are so small that the effect in altering the position of the

centre of gravity and the moments of inertia of the body may be

neglected, and that the whole time of impact is so short that the

motion of the body in that time may be neglected. If for any
bodies these assumptions are not true, the effects of their impact

must be deduced from the equations of the second order. We
may therefore assert that at the moment of greatest compression

the centres of gravity of the two spheres are moving with equal

velocities.

The ratio of the magnitude of the action between the bodies

during the period of restitution to that during compression is

found to be different for bodies of different materials. In some
cases this ratio is so small that the force during the period of

restitution may be neglected. The bodies are then said to be in-

elastic. In this case we have just after the impact u' = v'. This

„ mm / \ 1 , mu + m'v
gives B = > (u — v), whence u — — .° m+m m+m

If the force of restitution cannot be neglected, let R be the

whole action between the balls, R^ the action up to the moment
of greatest compression. The magnitude of R must be found by
experiment. This may be done by determining the values of u
and v', and thus determining R by means of equations (1). These

experiments were made in the first instance by Nevfton, and the
r»

result is that -p- is a constant ratio depending on the material of

the balls. Let this constant ratio be called 1 +e. The quantity
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e is always less tlian unity, in the limiting case when e = 1 the

bodies are said to be perfectly elastic.

The value of e being supposed known the velocities after

impact may be easily found. The action i^^ must be first calcu-

lated as if the bodies were inelastic, then the whole value of R
m&j be found by multiplying this result by 1 + e. This gives

B =—-—j{u-v){l + e),m + m ^ ^ '

whence w' and v may be found by equations (1).

180. As an example, let us consider how the motion of the reel discussed in

Art. 170 would be affected if the string were so slightly elastic that we can apply

this theory.

Since the point of the reel in contact with the string has no velocity at the

moment of greatest compression, the impulsive tension found in the article referred

to, measures the whole momentum communicated to the reel from the beginning of

the impact up to the moment of greatest compression. By what has been said in

the last article, the whole momentum communicated from the beginning to the

termination of the period of restitution will be found by multiplying the tension

found in Art. 170 by 1 + e, if e be the measure of the elasticity of the string. This

gives T=^mu (1 + e). The motion of a reel acted on by this known impulsive force

is easily found. Resolving vertically we find m(u'-v)= -^mv(l + e). Taking

moments about the centre of gravity mfcV=^mva(l + e), whence v' and w' may
be found.

Ex. A uniform beam is balanced about a horizontal axis through its centre

of gravity, and a perfectly elastic baU is let fall from a height A on one extremity;

determine the motion of the beam and ball.

Eesult. Let M, m be the masses of beam and ball, 2a= length of beam, V, V
the velocities of baU at the moments just before and after impact, w' the angular

vdooity of the beam. Then w = 7-r-—5-^—
, V'=V. = ^

.

181. Rough bodies. Hitherto we have only considered the

impulsive action normal to the common surface of the two bodies.

If the bodies are rough there will clearly be an impulsive friction

called into play. Since an impulse is only the integral of a very

great force acting for a very short time, we might suppose that

impulsive friction obeys the laws of ordinary friction. But these

laws are founded on experiment, and we cannot be sure that they

are correct in the extreme case in which the forces are very great.

This point M. Morin undertook to determine by experiment at

the express request of Poisson. He found that the frictional

impulse between two bodies which strike and slide beai's to the

normal impulse the same ratio as in ordinary friction, and that

this ratio is independent of the relative velocity of the striking

bodies. M. Morin's experiment is described in the following

article.
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182. A box AB which can be loaded with shot so as to be of

any proposed weight has two vertical beams A C, BD erected on

its lid ; CD is joined by a cross piece and supports a weight

equal to mg attached to it by a string. The weight of the loaded

box is Mg. A string AEF passes horizontally from the box over

a smooth pulley E and supports a weight at F equal to (M+ m)g/jb.

The box can slide on a horizontal plane whose coefficient of fric-

tion is /A, and therefore having been once set in motion, it moves
in a straight line with a uniform velocity which we will call V.

Suddenly the string supporting mg is cut, and this weight falls

into the box and immediately becomes fixed to the box. There
will clearly be an impulsive friction called into play between the

box and the horizontal plane. If the velocity of the box im-
mediately after the impulse be again equal to V, the coefficient of

impulsive friction is equal to that of finite friction.

The argument may be made evident as follows. Let t be the

time of the fall. When the weight strikes the box, it has a hori-

zontal velocity equal to V and a vertical velocity equal to gt The
box itself has a horizontal velocity V+ft, where

fMmg

M+ (M+'m)gfi'

Let F and R be the horizontal and vertical components of the

impulse between the box and the horizontal plane. There will

be an impulse between the falling weight and the box and an

impulsive tension in the string AEF; by means of these the

momenta generated by the external blows F and JR are spread

over the whole system. Let V be the common velocity of the

whole system just after the impulses F and B, are completed.

This velocity V' is found by experiment to be equal to F! Re-
solving horizontally and vertically as in Art. 168, we have

{M-hm + {M+'m)gfi] V -{]!^+{M+m)gfi]{V+ft)-mV=-F
mgt = R.

Putting V=V and substituting for /, we immediately find that

F=fiR.

Ex. Show that the resultant impulse between the box and the falling weight

is vertical.

183. When two inelastic bodies impinge on each other at

some point A, the points in contact at the beginning of the im-

pact have a relative velocity both along the common tangent

plane at A and also along the normal Thus two reactions will be
called into play, a normal force and a friction, the ratio of these

two being fi, the coefficient of friction. As the impact proceeds

the relative normal velocity gets destroyed, and is zero at the

moment of greatest compression. Let R be the whole momentum
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transferred normally from one body to the other in this very

short time. This force R is an unknown reaction, to determine it

we have the geometrical condition that just after impact the

normal velocities of the points in contact are equal. This condi-

tion must be expressed in the manner explained in Art. 137.

The relative sliding velocity at A is also diminished. If it

vanishes before the moment of greatest compression, then during

the rest of the impact, only so much friction is called into play,

and in such a direction, as is necessary (if any be necessary) to

prevent the points in contact at A from sliding, provided that

this amount is less than the limiting friction. Let F be the

whole momentum transferred tangentially from one body to the

other. This reaction F is to be determined by the condition

that just after impact the tangential velocities of the points

in contact are equal. If, however, the sliding motion does not

vanish before the moment of greatest compression, then the whole
of the friction is called into play in the direction opposite to that

of relative sliding, and we have F = jxR. Generally we may dis-

tinguish these two cases in the following manner. In the first

case it is necessary that the values of F and R found by solving

the equations of motion should be such that F < /jlR. In the

second case, the final relative velocity of the points in contact at

A must be in the same direction after impact as before. These
are however not sufficient conditions, for it is possible that,

in more complicated cases, the sliding may change, or tend to

change, its direction during the impact. See Art. 187.

184. If the impinging bodies be elastic, there may be both

a normal reaction and a friction during the period of restitution.

Sometimes we shall have to consider this stage of the motion as a

separate problem. The motion of the bodies at the moment of

greatest compression having been determined, these are to be

regarded as the initial conditions of a new state of motion under
different impulses. The friction called into play during restitu-

tion must follow the same laws as that during compression. Just

as before, two cases will present themselves, either there will be

sliding during the whole period of restitution or only during a

portion of it. These are to be treated in the manner already

explained.

185. There is one very important difference between the

periods of compression and restitution. During the compression

the normal reaction is unknown. The motion of the body just

before compression is given, and we have a geometrical equation

expressing the fact that the relative normal velocity of the points

in contact is zero at the termination of the period of compression

From this geometrical equation we deduce the force of compres-

R. D. 11
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sion. The motion of the body just before restitution is thus

found, but the motion just after is the thing we want to deter-

mine. For this, we have no geometrical equation, but the force

of restitution bears a given ratio to the force of compression, and
is therefore known.

186. Historical Summary. The problem of the impact of

two smooth inelastic bodies is considered by Poisson in his Traite

de Mecanique, Seconde Edition, 1833. The motion of each body
just before impact being supposed given, he forms six equations of

motion for each body to determine the motion just after impact.

These contain thirteen unknown quantities, viz. the resolved velo-

cities of the centre of gravity of each body along three rectangular

axes, the three resolved angular velocities of each body about the

same axes, and lastly the mutual reaction of the two bodies. Thus
the equations are insufficient to determine the motion. A thir-

teenth equation is then obtained from the principle that the

impact terminates at the moment of greatest compression, i.e. at

the moment when the normal velocities of the points of contact

of the two bodies which impinge, are equal.

When the bodies are elastic, Poisson divides the impact into

two periods. The first begins at the first contact of the bodies and
terminates at the moment of greatest compression. The second

begins at the moment of greatest compression and terminates

when the bodies separate. The motion at the end of the first

period is found exactly as if the bodies were inelastic. The motion

at the end of the second period is found from the principle that

the whole momentum communicated by one body to the other

during the second period, bears a constant ratio to that communi-
cated during the first period of the impact. This ratio depends

on the elasticity of the two bodies and can be found only by
experiments made on some bodies of the same material in some
simple cases of impact.

When the bodies are rough and slide on each other during the

impact, Poisson remarks that there will also be a frictional im-

pulse. This is to be found from the principle that the magnitude
of the friction at each instant must bear a constant ratio to the

normal pressure and the direction must be opposite to that of tlie

relative motion of the points in contact. He applies this to the

case of a sphere, either inelastic or perfectly elastic, impinging on

a rough plane, the sphere turning before the impact about a hori-

zontal axis perpendicular to the direction of motion of the centre

of gravity. He points out that there are several cases to be con-

sidered
; (1) when the sliding is the same in direction during the

whole of the impact and does not vanish, (2) when the sliding

vanishes during the impact and remains zero, (3) when the sliding

vanishes and changes sign. This third case, however, contains an
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unknown quantity and his formulae therefore fail to determine the
motion. Poisson points out that the problem would be very com-
plicated if the sphere had an initial rotation about an axis not

perpendicular to the vertical plane in which the centre of gravity

moves. This case he does not attempt to solve, but passes on to

discuss at greater length the impact of smooth bodies.

M. Coriolis in his Jeu de Billard (1835) considers the impact of

two rough spheres sliding on each other during the whole of the
impact. He shows that if two rough spheres impinge on each

other the direction of sliding is the same throughout the impact.

M. Ed. Phillips in the fourteenth volume of Liouville's Journal,

1849, considers the problem of the impact of two rough inelastic

bodies of any form when the direction of the friction is not neces-

sarily the same throughout the impact, provided the sliding does

not vanish during the impact. He divides the period of impact
into elementary portions and applies Poisson's rule for the magni-
tude and direction of the friction to each elementary period. He
points out how the solution of the equations may be effected, and in

particular he discusses the case in which the two bodies have their

principal axes at the point of contact parallel each to each and
also each body has its centre of gravity on the common normal at

the point of contact. He deduces from this two results, which will

be given in the chapter on Momentum.

M. Phillips does not examine in detail the impact of elastic

bodies, though he remarks that the period of impact must be
divided into two portions which must be considered separately.

These however, he considers, do not present any further pecu-

liarities when the same suppositions are made.

The case in which the sliding vanishes and the friction becomes
discontinuous, does not appear to have been examined by him.

In this chapter we shall discuss the theory of impulses only so

far as motion in one plane is concerned. In the chapter on

Momentum the theory will be taken up again and extended to

bodies of any form in space of three dimensions.

187. General Problem of impact. Two bodies of any

form impinge on each other in a given manner. It is required to

find the motion just after impact. The bodies are smooth or rough,

inelastic or elastic.

Let G, G' he the centres of gravity of the two bodies, A the

point of contact. Let U, V be the resolved velocities of G just

before impact, parallel to the tangent and normal respectively

at A; u, V the resolved velocities at any time t after the com-

mencement of the impact, but before its termination. Then t is

indefinitely small. Let O be the angular velocity of the body,

11—2
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whose centre of gravity is G, just before impact, to the angular

velocity after the interval t. These are to be taken as positive

when the rotation is like the hands of a watch. Let M be the

mass of the body, k its radius of gyration about O. Let GN be

a perpendicular from G on the tangent at A, and let AN = .r.

NG = y. Let accented letters denote corresponding quantities for

the other body.

188. Let the bodies be perfectly rough and inelastic, so that at

the termination of the impact the relative velocity of sliding and
the relative velocity of compression are both zero (see Art. 156). In

this case, taking t to be equal to the whole duration of the impact,

the letters u, v, (o, u, v, eo' will refer to the motion just after

impact. We then have, by Art. 137,

u — ya> — u— y'm = 0)

V +X(o — v' — x'(o = Oj
'

Resolving parallel to the tangent and normal at the point of con-

tact we have, by Art. 169,

M{u-U) + M'{u-U') = 0]

M{v-V) + M'{v' -V') = 0]

and by taking moments for each body about the point of contact

Mk^ (o) - n) + M{u - U)y - M{v - V)x = 0]

M'k'* (o)' - D,') - M'{u - U')y - M'{v' - V')x' = OJ

These six equations will be sufficient to determine the motion just

after impact.
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189. If the bodies be perfectly smooth and inelastic, the first

of these six equations will no longer hold, and instead of the third
we have the two equations

u-U=0, u-U' = 0,

obtained by resolving parallel to the tangent for each body sepa-
rately.

190. If the bodies be smooth and elastic we must introduce
the normal reaction into the equations. We write down the equa-
tions (1) and (2) as given in the next Article, except that F=0.
Then equation (4) gives the velocity G of compression at any
instant of the impact. Putting C = 0, we have as in equation (6)
the value of B up to the moment of greatest compression, viz.

R = -T. Multiplying this by 1 + e we have by Art. 179, the com-
Cu

plete value of R for the whole impact. Substituting this value of
R in equations (1) and (2), we find the values of u, v, co, u, v, m
just after the impact.

191. Ex. Two smooth perfectly elastic bodies impinge on each other. Let

D, jy be the normal velocities of approach, i. e. the velocities of the point of contact

of each just before impact resolved along the normal each towards the other. Prove

that the vis viva lost by the body M is equal to 4 -^ ( B' ,„„— D ,^,,,„ | , the
a'2 \ MW' M'V^ )

'

notation being the same as in the next proposition.

Another method of finding the change in the vis viva will be given in the

chapter under that heading.

192. Next, let the bodies be imperfectly rough and elastic. In
this case, as explained in Art. 158, the friction which can be
called into play is limited in amount. The results obtained in

Art. 188 will not apply to the case in which this limited amount of

friction is insufficient to reduce the relative sliding to zero. To
determine this, we must introduce the frictional and normal im-
pulses into the equations.

Let R be the whole momentum communicated to the body M
in the time t of the impact by the normal pressure, and let F be
the momentum communicated by the frictional pressure. We
shall suppose these to act on the body whose mass is M in the

directions NG, NA respectively. Then they must be supposed to

act in the opposite directions on the body whose mass is M'.

Since R represents the whole momentum communicated to

the body M in the direction of the normal, the momentum com-
municated in the time dt is dR. As the bodies can only push
against each other, dR must be positive, and, by Art. 136, when
dR vanishes, the bodies separate. Thus the magnitude of R may
be taken to measure the progress of the impact. It is zero at the



166 MOTION IN TWO DIMENSIONS.

beginning, gradually increases throughout, and is a maximum at

the termination of the impact. It will be found more convenient

to choose R rather than the time t as the independent variable.

The dynamical equations are by Art. 168

M{u-U) = -F
I

M(v-V) = R \ (1).

MJc'{co-n) = Fy + Ra:)

M'{u-U) = F \

M'{v'- V') = -R \ (2).

M'k'\oi>'-Q,')=Fy'-Ra!)

The relative velocity of sliding of the points in contact is by

Art. 137
S = u — y(o — u'— y<£) (3),

and the relative velocity of compression is by the same article

C = v' •\- x'o) — v — X(o (4).

Substituting in these equations from the dynamical equations

we find

S=S,-aF-bR (5),

C=C,-bF-aR (6),

where s^= U-y^- U' -y'n' (7),

C,= V'+x'£l'-V-xa (8),

a-l+i- +i + -ll (9)

11a? ,'2

'''~M'^M''^MIc''^M'k"
^^^^'

I J

M]e- M'k'^ ^
''

These may be called the constants of the impact. The first

two ^0, Cq represent the initial velocities of sliding and com-
pression. These we shall consider to be positive ; so that the

body M is sliding over the body M' at the beginning of the com-
pression. The other three constants a, a, b are independent of

the initial motion of the striking bodies. .The constants a and a,

are essentially positive, while b may have either sign. It will be

found useful to notice that aa' > b^.

193. The Representative Point. It often happens that

6 = 0, and in this case the discussion of these equations is very

much simplified. But certainly in the general case, and even in
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the simple case when b = 0, it will be found more easy to follow

the changes in the forces if we adopt a graphical method.

The point we have to consider is this. As B proceeds from
zero to its final maximum value by equal continued increments dR,
F proceeds also from zero by continued increments dF, which may
not always be of the same sign and which are governed by a dis-

continuous law, viz. either dF= ± [xdR or dF is just sufficient to

prevent relative motion at the point of contact as explained in

Art. 158. We want therefore some rule to discover the value of F.

To determine the actual changes which occur in the frictional

impulse as the impact proceeds, let us draw two lengths AR, AF
along the normal and tangent at J. in the directions NG, AN re-

spectively, to represent the magnitudes of R and F at any moment
of the impact. Then if we consider AR and AF to be the co-

ordinates of a point P, referred to AR, AF as axes of R and F, the

changes in the position of P will indicate to the eye the changes
that take place in the forces during the progress of the impact. It

will be convenient to trace the two loci determined by ^= 0, C= 0.

By reference to (5) and (6) we see that they are both straight

lines. These we shall call the straight lines of no sliding and of

greatest compression. To trace these, we must find their inter-

cepts on the axes of F and E. Take

AG = ^, AS = ^, AG' = ^, A8' = ^,a a b

then SS', CC will be these straight lines. Since a and a' are

necessarily positive, while 6 has any sign, we see that their inter-

cepts on the axes of F and R respectively are positive, while their

intercepts on the axes of R and F must have the same sign.

Since aa > If, the acute angle made by the line of no sliding with

the axis of F is greater than that made by the line of greatest

compression, i.e. the former line is steeper to the axis of F than

the latter. It easily follows that the two straight lines cannot

intersect in the quadrant contained by RA produced and FA
produced.

194. In the beginning of the impact the bodies slide over

each other, hence, as explained in Art. 158, the whole limiting

friction is called into play. The point P therefore moves along a

straight line AL, defined by the equation F= fj,R, where fi is the

coefficient of friction. The friction will continue to be limiting

until P reaches the straight line SS'. If R^ be the abscissa of

S
this point we find R^ = ^ . This gives the whole normal^ °

afj, +
blow, from the beginning of the impact, until friction can change

from sliding to rolling. If R^ is negative, the straight lines AL
and ^>Si' will not intersect on the positive side of the axis of F.
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In this case the friction will be limiting throughout the impact.

If JRq is positive the representative point P will reach S8'. After

this only so much friction is called into play as will suffice to

prevent sliding, provided this amount is less than the limiting

friction. If the acute angle which SS' makes with the axis of R
be less than tan~^ya, the friction dF necessary to prevent sliding

will be less than the limiting friction ixdR. Hence P must
travel along SS' in such a direction that the abscissa R con-

tinues to increase positively. In this case the friction will not

again become limiting during the impact.

But if the acute angle which SS' makes with the axis of R be
greater than tan"^ //,, the ratio of dF to dR will be numerically

greater than jx, and more friction is necessary to prevent sliding

than can be called into play. The friction will therefore continue

to be limiting, and P, after reaching SS\ must travel along a
straight line, making the same angle with the axis of R that AL
does. But this angle must be measured on the opposite side of

the axis of R, for when the point P has crossed SS' the direction

of relative sliding and therefore the direction of friction is

changed. In this case, it is clear that the friction will continue

limiting throughout the impact.

When P passes the straight line GC, compression ceases and
restitution begins. But the passage is- marked by no peculiarity

except this. If R^ be the abscissa of the point at which P crosses

GC , the whole impact, for experimental reasons, is supposed to

terminate when the abscissa of P is R^ = R^{1 -\- e), e being the

measure of the elasticity of the two bodies.

It is obvious that a great variety of cases may occur according

to the relative positions of the three straight lines AL, SS' and
GC. But in all cases the progress of the impact may be traced

by the method just explained, which may be briefly summed up
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in the following rule. The representative point P travels along AL
until it meets SS'. It then proceeds either along SS', or along a
straight line making the same angle with the axis of^as AL does,

but on the opposite side. The one along lohich it proceeds is the

steeper to the axis of F. It travels along this line in such a direc-

tion as to make the abscissa R increase. The complete value of R
for the whole impact is found by multiplying the abscissa of the

point at which P crosses CC by 1 + e. The complete value of F is

the corresponding ordinate of P. Substituting these in the dyna-
mical equations (1) and (2), the motion just after impact may be

easilyfound.

195. If the bodies be smooth, the straight line AL coincides

with the axis of B. The representative point P must travel along
the axis of R and the complete value of R for the whole impact
is found by multiplying the abscissa of (7 by 1 + e.

If the bodies be perfectly rough (Art. 156) the straight line AL
coincides with the axis of F. The representative point P must
travel along the axis of F until it arrives at the point S. It will

then travel along the line of no sliding S8' until it reaches the
line GC of greatest compression. If the bodies be inelastic, the

co-ordinates R^, F^, of this intersection are the values of R and F
required. But if the bodies be imperfectly elastic the representa-

tive point continues its journey along the line of no sliding. The
complete value of R for the whole impact is then R.^ = R^{1 + e),

and the complete value of F may be found by substituting this

value for R in the equation to the line of no sliding.

196. It is not necessary that the friction should keep the
same direction during the impact. The friction must keep one
sign when P travels along AL. But when P reaches S8', its

direction of motion changes, and the friction dF called into play in

the time dt may have the same sign as before or the opposite.

But it is clear that the friction can change sign only once during
the impact.

It is possible that the friction may continue limiting through-
out the impact, so that the bodies slide on each other throughout.

The necessary conditions are that either the straight line SS'
must be less steep to the axis of F than AL, or the point P
must not reach the straight line SS' until its abscissa has be-

come greater than R^. The condition for the first case is, that

6 must be greater than fia. The abscissae of the intersections
o

of AL with SS' and GO' are respectively R^ = —, and
(J

^ -^
'^ ttfi + b

i?j = 7—^ . The necessary conditions for the second case are

"that R^ must be positive, and R^, either negative or positively

greater than R^(l + e).
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197. Ex. 1. Kebonnd of a ball. A spherical ball moving mthout rotation on

a smooth horizontal plane impinges with velocity V against a rough vertical wall

whose coejicient of friction is fi. The line of motion of the centre of gravity before

incidence making an angle a. with the normal to the wall, determine the motion just

after impact.

This is the general problem of the motion of a spherical ball projected without

initial rotation against any rough elastic plane. Thus it applies to a billiard ball

impinging against a cushion, or to a "fives" ball projected against a wall, or to

a cricket ball rebounding from the ground. When the ball has any initial rotation

the problem will, in general, be a problem in three dimensions and will be discussed

further on.

Let u, v be the velocities of the centre at any time t after the commencement

of the impact resolved along and perpendicular to the wall. Let w be the angular

velocity at the same instant. Let E and F be the normal and frictional blows from

the beginning of the impact up to that instant. L^t M be the mass and r the

radius of the sphere.

Then we have

M{u-V Bina)= -F
M(v + Vcosa)= 'A

Fr)

The velocity of sliding of the point A of contact is

r'+ li^F

fc2 M'
S=u-ru=Fsina-

The velocity of compression of the point of contact is

C= -v= Fco8a- Ti.M
Measure a length AS in the figure to represent

r^+P
JlfFsina, and a length

JK Bf

MfL
I

\
AC to represent MV cosa along the axes of F and R respectively. Then SB and

CB drawn parallel to the directions of JR and F will be the lines of no sliding and

greatest compression. Also we see that tanJ5^C=-
' + ifc3

tana=f tana. Li the

beginning of the impact the sphere slides on the wall, hence the representative

point P, whose co-ordinates are R and F, begins to describe the straight line F=fJiR.
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It /ji.>^ tana, this straight line cuts the line of no sliding SB in some point L
before it cuts the line of greatest compression. Hence the representative point

describes the broken Une ALB. At the moment of greatest compression, F and R
are the co-ordinates of B.

Therefore F=^MV Bma, E=MV coaa.

These results are independent of /m because we see from the figure that more

than enough friction could be called into play to destroy the sliding motion.

If /i<f tana, the straight Une F=fiR cuts the line of greatest compression CB
in some point H before it cuts the line of no sliding. The friction is therefore

insuflScient to destroy the sliding. At the moment of greatest compression F and B
are the co-ordinates of H,

F=fx MV cosa, B=MV Qosa.

If the sphere be inelastic we have only to substitute these values of F and R in the

equations of motion to find the values of u, v, w just after impact.

If the sphere be imperfectly elastic with a coefficient of elasticity e, the repre-

sentative point P will continue its progress until its abscissa is given by

E=MFcosa(l + e).

Take AC to represent this value of R, and draw C'B' parallel to CB. Then, as

before, we see that tanB'AC= = -=— .

7 1 + e

If /*>- z , the representative point describes some broken line like ALB',

and cuts SB' before it cuts B'C In this case F and R are the co-ordinates of B',

F=^MV sina, R=MV co8a(l + e).

11 H<- , the representative point describes some unbroken line like ARK,

and cuts B'C before it cuts SB'. In this case F and R are the co-ordinates of K,

F=iJ.MV cosa {I -k-e), ii=lfFcosa(l-l-e).

Let j8 be the angle the direction of motion of the centre of the ball makes with

the normal to the waU after impact, then tanj3== - . We see therefore

„ 5 tana tana-u(l+e)
tan^=^-^, or= -^ '-

,

according as ii is greater or less than ^ ^j .

Ex. 2. An imperfectly elastic cricket ball is projected -so that it is rotating

with an angular velocity fi about a horizontal axis perpendicular to the plane of

the parabola described by its centre. Just before it strikes the ground the Velocity

of the centre is V, and the direction of motion makes an angle a with the normal.

Show that the angle of rebound ^ is given by either

c tanfi== tana-i-=
.fj^

, or=tana-/t(l-i-e),•^7 IV cos a

2 ( rfi ) 1
according as u is greater or less than ^ \ tan a - ^j^ f

^p-— .

198. Ex. 1. Show that the representative point P as it travels in the manner

directed in the text must cross the line of greatest compression, and that the

abscissa R of the point at which it crosses this straight line must be positive.
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Ex. 2. Show that the conic whose equation referred to the axes of R and F is

aF^+ 2bFR + a'R^= e, where e is some constant, is an ellipse, and that the straight

lines of no sliding and greatest compression are parallel to the conjugates of the

axes of F and R respectively. Show also that the intersection of the straight

lines of no sliding and greatest compression must lie in that angle formed by the

conjugate diameters which contains or is contained by the first quadrant.

Ex. 3. Two bodies, each turning about a fixed point, impinge on each other,

find the motion just after impact.

Let G, G', in the figure of Art. 187, be taken as the fixed points. Taking

moments about the fixed points, the results will be nearly the same as those given

in the case considered in the text.
|

Ex. 4. Show that the Vis Viva lost when two bodies impinge on each other

may be found from either of the formulae

Vis Viva lost ^ 2FSo+ 2RCo- aF^ - 2hFR - a'R^

_ {aCo^-2bSoCo + a'SQ^)-{a(P-2bSC+aS^)

aa'-b^

where F, R are the whole frictional and normal forces called into play, and C^, Sq,

C, S are the initial and final values of the velocities of compression and sliding. If

the bodies are perfectly rough and inelastic C and S are both zero.

Initial Motions.

199. Breakage of a support. Suppose a system of bodies

to be in equilibrium and that one of the supports suddenly gives

way. It is required to find the initial motion of the bodies and
the initial values of the reactions which exist between the several

bodies.

The problem of finding the initial motion of a dynamical
system is the same as that of expanding the co-ordinates of the
moving particles in powers of the time t Let {x, y, 6) be the
co-ordinates of any body of the system. For the sake of brevity

let us denote by accents differential coefficients with regard to the
time, and let the suffix zero denote initial values. Thus a;/

denotes the initial value of -^ . By Taylor's theorem we have

• ^ = a-H<^ + <'j| + (1):

the term a?/ is omitted because we shall suppose the system to

start from rest.

First, let only the initial values of the reactions he required.

The dynamical equations will contain the co-ordinates, their second
differential coefficients with regard to t, and the unknown re-

actions. There will be as many geometrical equations as re-

actions. From these we have to eliminate the second differential
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coefficients and find the reactions. The process will be as follows,

which is really the same as the first method of solution described

in Art. 135.

Write down the geometrical equations, differentiate each twice

and then simplify the results by substituting for the co-ordinates

their initial values. Thus, if we use Cartesian co-ordinates, let

<f>
{x, y, 6) = be any geometrical relation, we have since x^ = 0,

dx""' ^ dyy^ ^ dd^'
""•

The process of differentiating the equations may sometimes

be much simplified when the origin has been so chosen that the

initial values of some at least of the co-ordinates are zero. We
may then simplify the equations by neglecting the squares and
products of all such co-ordinates. For if we have a term x^, its

second differential coefficient is 2 {xx" -f x^), and if the initial

value of X is zero, this vanishes.

The geometrical equations must be obtained by supposing the

bodies to have their displaced position, because we require to

differentiate them. But this is not the case with the dynamical

equations. These we may write down on the supposition that

each body is in its initial position. These equations may be

obtained according to the rules given in Art. 135. The forms

there given for the effective forces admit in this problem of some
simplifications. Thus since r^ = 0,

(f)^'
= 0, the accelerations along

and perpendicular to the radius vector take the simple forms r/'

and r^„". So again the acceleration — along the normal vanishes.

If, for example, we know the initial direction of motion of the

centre of gravity of any one of the bodies, we might conveniently

resolve along the normal to the path. This will supply an equa-

tion which contains only the impressed forces and such tensions

or reactions as may act on that body. If there be only one re-

action, this equation wiU suffice to determine its initial value.

The rule may be shortly stated thus. Write down the geometri-

cal equations of the system in its general position. Differentiate

each twice and then simplify the residts by substituting for the co-

ordinates their initial values. Write dovm the dynamical equations

of the system supposed to be in its initial position. Eliminate the

second differential coefficients and we shall have sufficient equations

tojind the initial values of the reactions.

We may also deduce from the equations the values of x^'

,

y'', 0q", and thus by substituting in equation (1) we have found

the initial motion up to terms depending on f.
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200, Secondly, let the initial motion he required. How many
terms of the series (1) it may be necessary to retain will depend
on the nature of the problem. Suppose the radius of curvature

of the path described by the centre of gravity of one of the bodies

to be required. We have

P in I II >xy —yx

and by differentiating equation (1)

&c. = &c.

;

x'y" - y'x" = «Vo'" -<V) { + «Vo ^ - <2/o") | + • •

These results may also be obtained by a direct use of Taylor's

theorem.

If then the body start from rest, the radius of curvature is

zero. But if x^'y^" - x^'y^' = 0, we have

r — " " iv iv " •

To find these differential coefficients we may proceed thus.

Differentiate each dynamical equation twice and then reduce

it to its initial form by writing for x, y, 6, &c. their initial values,

and for x, y' , & zero. Differentiate each geometrical equation

four times and then reduce each to its initial form. We shall

thus have sufficient equations to determine x^', x^", x^'', &c., R^,

R^', R^", &c., where R is any one of the unknown reactions. It

will often be an advantage to eliminate the unknown reactions

from the equations before differentiation. We shall then have

only the unknown coefficients x^", x^"', &c. entering into the equa-

tions.

If we know the direction of motion of one of the centres

of gravity under consideration, we can take the axis of y a tangent

to its path. Then we have p =^ , where x is of the second order,

y of the first order, of small quantities. We may therefore neg-

lect the squares of x and the cubes of y. This will greatly sim-

plify the equations. If the body start from rest we have x^ = 0,
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and if x^'= 0, we may then use tlie formula

P, = 3^

201. Ex. A circular disc is hung up by three equal strings attached to three

points at equal distances in its circumference, and fastened to a peg vertically over

the centre of the disc. One of these strings is suddenly cut. Determine the initial

tensions of the other two.

Let be the peg, AB the circle seen by an eye in its plane. Let OA be the

string which is cut and C be the middle point of the chord joining the points of the

.

\

A G C B

circle to which the two other strings are attached. Then the two tensions, each

equal to T, are throughout the motion equivalent to a resultant tension R along

CO. If 2a be the angle between the two strings, we have R = 2T cos a.

Let I be the length of OC, j8 be the angle GOC, a be the radius of the disc. Let

(x, y) be the co-ordinates of the displaced position of the centre of gravity with

reference to the origin 0, x being measured horizontally to the left and y vertically

downwards. Let 6 be the angle the displaced position of the disc makes with AB.

By drawing the disc in its displaced position it will be seen that the co-ordinates

of the displaced position of C are a; - i sin /3 cos 6 and y-l sin/3 sinO. Hence since

the length OC remains constant and equal to I, we have

x^ + y^-2l sin /3 (a; cos ^-t- 2/ sin e) = Z^ cos^^.

Since the initial tensions only are required, it will be sufficient to differentiate

this twice. Since we may neglect the squares of small quantities, we may omit x^,

put cos ^= 1, sm6 = 9. The process of differentiation wiU not then be very long,

for it is easy to see beforehand what terms will disappear when we equate the

differential coefficients {x', y', 0') to zero, and put for (x, y, 6) their initial values

(0, I C08/3, 0). We get

2/o" cosjS= sin/3 {xq" + 1 cos^Oq").

This equation may also be obtained by an artifice which is often useful. The

motion of G is made up of the motion of C and the motion of G relatively to C.

Since C begins to describe a circle from rest, its acceleration along GO is zero.

d^e
Again, the acceleration of G relatively to C when resolved along CO is GC -j-^ cos/3.

The resolved acceleration of G is the sum of these two, but it is also equal to

y^" cos/3 - Xq" sin^. Hence the equation follows at once.

In this problem we require the dynamical equations only in their initial form.

These are

mxo"=Jij sin/3

myQ"=mg -Rq cosp
mifc2tfQ"=ijQi sin/S cos/3
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where m is the mass of the body. Substituting 5n the geometrical equation we find

1 +
j^^

sin2/3 COS2/3 I
The tension of any string, before the string OA was cut, may be found by the

rules of Statics, and is clearly T., = -——
, where y is the angle AOG. Hence the

' 3 cos7
change of tension can be found.

202. Ex. 1. Two strings of equal length have each an extremity tied to a

weight C and their other extremities tied to two points A, B in the same horizontal

line. If one be cut the tension of the other is instantaneously altered in the ratio

l:2oos2^. [St Pet, Coll.]

Ex. 2. An eUiptic lamina is supported with its plane vertical and transverse

axis horizontal by two weightless pins passing through the foci. If one pin be

released show that if the eccentricity of the ellipse be a/ -= , the pressure on the

other pin wiU be initially unaltered. [CoU. Exam.]

Ex. 3. Three equal particles A, B, C repelling each other with any forces, are

tied together by three strings of unequal length, so as to form a triangle right-

angled at ^ . If the string joining B and C be cut, prove that the instantaneous

changes of tension of the strings joining BA, CA are ^T cosB and ^TcosC
respectively, where B and C are the angles opposite the strings joining CA, AB
respectively, and T is the repulsive force between B and C.

Ex. 4. Two uniform equal rods, each of mass m, are placed in the form of

the letter X on a smooth horizontal plane, the upper and lower extremities being

connected by equal strings ; show that whichever string be cut, the tension of the

other is the same function of the inclination of the rods, and initially is ^mg sin a,

where a is the initial ineUnation of the rods. [St Pet. Coll.]

Ex. 5. A horizontal rod of mass m and length 2o hangs by two parallel

strings of length 2a attached to its ends : an angular velocity u being suddenly

communicated to it about a vertical axis through its centre, show that the initial

increase of tension of either string equals —^— , and that the rod will rise through

a space -^— . [Coll. Exam.]

Ex. 6. A particle is suspended by th e equal strings of length a from three

points forming an equilateral triangle of side 2h in a horizontal plane. If one

string be cut the tension of each of the others is instantaneously changed in the

^. 3a2 - 462
ratio

2(a2-52)
- [CoU- Exam.]

Ex. 7. A sphere resting on a rough horizontal plane is divided into an infinite

number of solid lunes and tied together again with a string; the axis through which

the plane faces of the lunes pass being vertical. Show that if the string be cut

the pressure on the plane is diminished instantaneously in the ratio 45v^ : 2048.

[Emm. Coll.]

1
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On Relative Motion or Moving Axes.

203. In many dynamical problems the relative motion of

the different bodies of the system is frequently all that is required.

In these cases it will be an advantage if we can determine this

without finding the absolute motion of each body in space. Let
us suppose that the motion relative to some one body (A) is

required. There are then two cases to be considered, (1) when
the body {A) has a motion of translation only, and (2) when it

has a motion of rotation only. The case -in which the body (A)
has a motion both of translation and rotation may be regarded
as a combination of these two cases. Let us consider these in

order.

I 204. The Fundamental Theorem. Let it be required to

! find the motion of any dynamical system relative to some moving
point G. We may clearly reduce C to rest by applying to every

element of the system an acceleration equal and opposite to that

of G. It will also be necessary to suppose that an initial velocity

equal and opposite to that of G has been applied to each element.

Let / be the acceleration of G at any time t. If every particle

m of a body be acted on by the same accelerating force / parallel

to any given direction, it is clear that these are together equi-

valent to a force f^m acting at the centre of gravity. Hence to

reduce any point of a system to rest, it will be sufficient to

apply to the centre of gravity of each body in a direction opposite

to that of the acceleration of (7 a force measured by Mf, where
M is the mass of the body and/the acceleration of G.

The point G may now be taken as the origin of co-ordinates.

We may also take moments about it as if it were a point fixed in

space.

Let us consider the equation of moments a little more minutely.

Let (r, 6) be the polar co-ordinates of any element of a body
whose mass is m referred to G as origin. The accelerations of

the particle are j^~''"( j~) ^^'^ " Tv'^)' ^^^^S ^^^ perpen-

dicular to the radius vector r. Taking moments about G, we get

'moment round G of the impressed forces

plus the moment round G of the reversed

dt \,' ^t)
~

I

effective forces of G supposed to act at the

! centre of gravity.

If the point G be fixed in the body and move with it, -j-

R.D. 12
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will be the same for every element of the body, and, as in Art. 88,

205. From the general equation of moments about a moving

point G we learn that we may use the equation

dca _ moment of forces about G
dt

~ moment of inertia about G

in the following cases.

First. If the point G be fixed both in the body and in space
;'

or, if the point G being fixed in the body move in space with

uniform velocity ; for the acceleration of G is zero.

Secondly. If the point C be the centre of gravity; for in that

case, though the acceleration of (7 is not zero, yet the moment
vanishes.

Thirdly. If the point G be the instantaneous centre of rota-

tion, and the motion be a small oscillation or an initial motion
which starts from rest. At the time t the body is turning about (7,

and the velocity of G is therefore zero. At the time t-\-dt, the

body is turning about some point C" very near to G. Let GG' = da,

then the velocity of G is coda. Hence in the time dt the velocity

of G has increased from zero to toda, therefore its acceleration is

o>-Ti • To obtain the accurate equation of moments about G we

must apply the effective force 2w . « -r- in the reversed direction

da
at the centre of gravity. But in small oscillations co and -^ are

both small quantities whose squares and products are to be
neglected, and in an initial motion w is zero. Hence the moment
of this force must be neglected, and the equation of motion will

be the same as if G had been a fixed point.

It is to be observed that we may take moments about any
point very near to the instantaneous centre of rotation, but it will

usually be most convenient to take moments about the centre in

its disturbed position. If there be any unknown reactions at the

centre of rotation, their moments will then be zero.

I

IhP206. If the accurate equation of moments about the insta:

taneous centre be required, we may proceed thus. Let L be th

moment of the impressed forces about the instantaneous centre,

G the centre of gravity, r the distance between the centre of

gravity and the instantaneous centre C, M the mass of the body;
then the moment of the impressed forces and the reversed

I
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effective forces about G is

L-M(o^.rco^GG'G.
at

If k be the radius of gyration about the centre of gravity, the
equation of motion becomes

writing for cos GG'G its value ^- .

da-

207. Impulsive forces. The argument of Art. 204 may
evidently be also applied to impulsive forces. We may thus ob-
tain very simply a solution of the problem considered in Art. 171.

A body is moving in any manner when suddenly a point in the body is con-

strained to move in some given manner, it is required to find the motion relative to 0.

Let us reduce to rest, we must apply at the centre of gravity G a momentum
equal to Mf, where / is the resultant of the reversed velocity of after the change

and the velocity of before the change. If w, «' be the angular velocities of the

body before and after the change, and r= OGf, we have by taking moments about 0,

(r^+ k^) (w' - w) =moment of/ about 0.

Now the moment about of a velocity at G is equal and opposite to the moment

about G of the same velocity applied at 0. Hence if L, L' be the moments about

O of the velocity of just before and just after the change, and k be the radius

L' — L
of gyration about the centre of gravity, we have w' - w= ,g » .

208. Ex. 1. Two heavy particles whose masses are m and m' are connected by

an inextensible string, which is laid over the vertex of a double inclined plane whose

mass is M, and which is capable of moving freely on a smooth horizontal plane.

Find the force which must act on the wedge that the system may be in a state of

relative equilibrium.

Here it will be convenient to reduce the wedge to rest by applying to every

particle an acceleration / equal and opposite to that of the wedge. Supposing this

done the whole system is in equilibrium. If F be the required force, we have by

resolving horizontally {M +m + m')f=F.

Let a, a' be the inclinations of the sides of the wedge to the horizontal. The

particle m is acted on by mg vertically and mf horizontally. Hence the tension

of the string is m{g sin a+/ cos a). By considering the particle m', we find the

tension to be also m' (g sino' -/cos a'). Equating these two we have

, m' sina' - m sina
•' mcosa+mcosa

Hence F is found.

209. Ex. 2. A cylindrical cavity whose section is any oval curve and whose

generating lines are horizontal is made in a cubical mass which can slide freely on

; mooth horizontal plane. The surface of the cavity is perfectly rough and a sphere

12—2
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is placed in it at rest so that the vertical plane through the centres of gravity of

the mass and the sphere is perpendicular to the generating lines of the cylinder.

A momentum B is communicated to the cube by a blow in this vertical plane. Find

the motion of the sphere relatively to the cube and the least value of the blow that

the sphere may not leave the surface of the cavity.

Simultaneously with the blow B there will be an impulsive friction between the

cube and the sphere. Let 31, m be the masses of the cube and sphere, a the radius

of the sphere, Ic its radius of gyration about a diameter. Let Vq be the initial

velocity of the cube, Vq that of the centre of the sphere relatively to the cube, Wq the

initial angular velocity. Then by resolving horizontally for the whole system, and

taking moments for the sphere alone about the point of contact, we have

m{vo+Vo) +MVo=B]

and since there is no sliding Vq - awo=0 ..

To find the subsequent motion, let (x, y) be the co-ordinates of the centre of the

sphere referred to rectangular axes attached to the cubical mass, x being horizontal

and y vertical, then the equation to the cylindrical cavity being given, j/ is a known

function of x. Let ^ be the angle the tangent to the cavity at the point of contact

of the sphere makes with the horizon, then tan\f/=-^. Let V be the velocity

of the cubical mass, then, by Art. 132, m( £^ + v\+MV=B (3).

If To be the initial vis viva and yQ the initial value of y, we have by the"
equation of vis viva

"'i(§+^y+(sy+*'"i+^^'=^°-2'"^(2/-yo> <*)• I
where w is the angular velocity of the sphere at the time t. If » be the velocity of

the centre of the sphere relatively to the cube, we have since there is no sliding

v= aw. Eliminating V and w from these equations, we have

(S) • i(l+'-V)(l4:) -^4=0,-2„ (5).

^here Cg=: —2!
757 + 2^^0 (6).

This equation gives the motion of the sphere relatively to the cube.

210. To find the pressure on the cube, let us reduce the cube to rest. Let R be
the normal pressure of the sphere on the cube, F the friction measured positively in

the direction in which the arc is measured. The whole effective force on the cube is

Z=iJ sin^+F cosi/'. By Art. 204 we must apply to every particle an acceleration

jr. opposite to this force. The sphere will therefore be acted on by a force — Z in a
. .

-^
horizontal direction in addition to the reaction i?, the friction F and its own weight.

Taking moments about the centre, we have wiife'— =Fo (7).

Resolving along a tangent to the path, m^^-F-^Zoos^-tn^sin^... (8).

But since there is no sliding, we have t>=aw... (9).
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Differentiating this and substituting from (7) and (8), we find

7sin^cos,/> F sin^

l + 7Cos2^ ^a2+ A;2l+7oos«^ ^
"^'

where y = ^ „ ^ . Eesolving the forces on the centre of the sphere along a

normal to the path, we have

mv^ _ m^ . , , ,,,.=B+ -jTj^X Bm\}i-mg cos^ (11),

where p is the radius of curvature of the path. Substituting for «" its value given

by (5), which may be conveniently written in the form

v^{l-^oos?^)=-^^{C-2y)g (12),

where fi = ^ ,„ ^^j-— , we have two equations to find the reactions F and B.

Eliminating F, we get

C-2y+pcosi/',—^^ 2T^^ = — P-P (13),

where P is rather a complicated function of ip which is not generally wanted.

We have

(
1-^cosW ^+ 7 ,.,.

1 +7C0SV /3(l-i8) ^
''

We notice that since /3 is necessarily less than unity, P cannot vanish and is always

finite and positive.

If the sphere is to go all round the cavity, it is necessary that the value of v

as given by (12) should be real for aU values of y and cos^. Hence the value of G
as found by (6) must be greater than the greatest value of 2y. It is also necessary

that B should be always positive, so that the values of cos ^ given by the equation

(13) when jR=0 must be all imaginary or numerically greater than unity. We
observe, if G>2y and p be always positive, that B cannot vanish for any positive

value of cos \}/.

If the equation (13), when E= 0, have two equal roots which are less than

unity, the pressure on the cavity vanishes but does not change sign. In this case

the sphere will not leave the cavity at the point indicated by this value of cos^.

The condition for equal roots gives us

— IP cosxp:,— ^,t = rT— P sm^ (15),
dfV ^1-^ycoi^p P+ y'^

where p is given as a function of \p from the equation to the cylinder. Writing

{=cos^ for brevity, this reduces to

^^^(l-/3a(l + 7?')(i3+ 7)= 8ini;'{3/3+7-(3/32 + 7')l''+/37(7-^)a (16).

If no other real value of coaxj/ makes JB=0 and change sign in (13), and if also

C>2y the sphere is then said jwsi to go round. We may put this reasoning in

another way. If the sphere is just to go round, then B must be positive throughout

dB
and must vanish at the point where it is least. In this case we have B and -^

simultaneously zero. Differentiating (13) we notice that the differential coefficient

dp .

of the right-hand side is zero, except at some singular points where P ot -^ la
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:i

infinite. We notice also that the constant C which depends on the initial con

ditions will disappear. In this way we again obtain equation (15).

It should be observed that the point where the pressure vanishes and is

minimum cannot be at the highest point of the cavity unless the radius of curvature

/) is a maximum or minimum at that point. This follows at once from equation (16).

If we wish to find the blow B that the sphere may just go round we must

examine the roots of the equations (13) and (16). To effect this we trace the

curve whose abscissa is ^ and ordinate rj, where mgrf=RpP, from ^=0 to ^= -1.

The curve may undulate and the maxima and minima ordinates are given by (16).

We take the least negative value of | which satisfies (16) and which is not greater

than unity. This will correspond to a minimum value of i; because rj begins to

decrease as | proceeds from to - 1. Then putting i? = we find C from (13), and

then B is known from (6). The result of course is subject to the limitations

mentioned above.

U' 211. Moving Axes. Next, let us consider the case in which
we wish to refer the motion to two straight lines 0^, Otj at right

angles, turning round a fixed origin with angular velocity a>.

Let Occ, Oy be any fixed axes at right angles and let the anglel

xO^ = 6. Let ^= OM, rj =PM be the co-ordinates of any point PA

It is evident that the motion of P is made up of the motions
of the two points M, N by simple addition. The resolved parts of

dP
the velocity ofM are -^ and ^to along and perpendicular to OM.

The resolved parts of the velocity of N are in the same way -j-

and 77a) along and perpendicular to ON. By adding these with
their proper signs we have

velocity of P) d^
parallel to 0^]^di^ '^^'

velocity of P] ^
parallel to Or)]

^
dt
+ ^
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In the same way by adding the accelerations of M and N we
have

acceleration of P) _ (f^ 1 d . ^ .

paraUel to 6>^ ]~ df'^"^ "^^dt ^'^ '"^'

acceleration of P\ d^rj ^ 1 <^ 2 \

parallel to Ov ] 'df"^"" ^ ~^dt^^
*")•

d^x cPvBy using these formulae instead of -^ and -5^ we may refer

the motion to the moving axes 0^, Otj.

In a similar manner we may use pplar co-ordinates. In this

case if (r, ^) be the polar co-ordinates of P, we have

acceleration of P] _ d^r /d<f> V
along rad. vect. ) df \dt /

'

acceleration of P] _ 1 d ( „ /d(f} \\

perp. to rad. vect.j
~ rdt\ \dt /J

'

212. Ex. 1. Let the axes 0^, Or) be oblique and make an angle a with each

other, prove that if the velocity be represented by the two components u, v parallel

to the axes,

u= -jT-^? cota - W1J coseca,

v=-~ + w7j cota + u^ coseco.

In this case PM is parallel to Otj. The velocities ofM and N are the same as

before. Their resultant is, by the question, the same as the resultant of u and v.

By resolving in any two directions and equating the components we get two equa-

tions to find u and v. The best directions to resolve along are those perpendicular

to 0| and Otj, for then u is absent from one of the equations and v from the other.

Thus u or w may be found separately when the other is not wanted.

Ex. 2. If the acceleration be represented by the components X and Y, prove

duZ= -7- - on* cot a - WW coseca,
at

tr do ,

r=-3-+an; cota+bnicoseca.
at

These may be obtained in the same way by resolving velocities and accelerations

perpendicular to 0| and Orj.

213. Ex. A particle under the action of any forces moves on a smooth curve

which is constrained to turn with angular velocity a about a fixed axis. Find the

motion relative to the curve.

Let us suppose the motion to be in three dimensions. Take the axis of Z as

the fixed axis, and let the axes of |, tj be fixed relatively to the curve. Let the

mass be the unit of mass. Then the equations of motion are
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-^<^-\lirf.)=x+m 1

(1),

where X, Y, Z are the resolved parts of the impressed accelerating forces in the

directions of the axes, B is the pressure on the curve, and {I, m, n) the direction-

cosines of the direction of B. Then since B acts perpendicularly to the curve

I -T- +wi -y +n .3- =U.
ds ds as

Suppose the moving curve to be projected orthogonally on the plane of ^, 17,

let a be the arc of the projection, and t;'=— be the resolved part of the velocity

parallel to the plane of projection. Then the equations may be written in the form

d?z

The two terms 2aw' -^ and - 2(uu' -^ may be regarded as the resolved parts of
da da

a force 2an7' acting in a direction whose direction-cosines are

n'= 0.
, dri , -d^

1 = —-, m'=—j-^

da da

These satisfy the equation V -— + m' -^ +n' ^ =0.
ds ds ds

Hence the force is perpendicular to the tangent to the curve, and also perpen-

dicular to the axis of rotation. Let B' be the resultant of the reaction B and of

the force 2uv'. Then B' also acts perpendicularly to the tangent, let {I", m", n") be

the direction-cosines of its direction.

The equations of motion therefore become

g=rH.^.|!HBV
d?z

de
=Z+ B'n"

.(2).

These are the equations of motion of a particle moving on a fixed etirve, and
acted on in addition to the impressed forces by two extra forces, viz. (1) a force w*r

tending directly from the axis, where r is the distance of the particle from the axis, 'j

d(x)
and (2) a force -5- r perpendicular to the plane containing the particle and tlic axis,

and tending opposite to the direction of rotation of the curve.
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In any particular problem we may therefore treat the curve as fixed. Thus

suppose the curve to be turning round the axis with uniform angular velocity.

Then resolving along the tangent we have

dv _ dx dy „dz n dr

ds ds ds ds ds'

where r is the distance of the particle from the axis. Let V be the initial value of

V, ra that of r. Then

v^-V^=2i{Xdx+Ydy+ Zdz) + w^ (r^ - ro^).

Let Vq be the velocity the particle would have had under the action of the same

forces if the curve had been fixed. Then

V-F2=2/"(

.

{Xdx+Ydy.+ Zdz).

Hence »« -V= w" {^^ - ^0%

The pressure on the moving curve is not equal to the pressure on the fixed curve.

The pressure R on the moving curve is clearly the resultant of the pressure R' on

the fixed curve, and a pressure 2wi/ acting perpendicular both to the curve and

to the axis in the direction of motion of the curve.

Thus suppose the curve to be plane and revolving uniformly about an axis

perpendicular to its plane, and that there are no impressed forces. We have,

resolving along the normal,

-=-io^rBiad>+R'
P

where ^ is the angle r makes with the tangent. If |) be the perpendicular drawn

from the axis on the tangent, we have, therefore,

R= — +(jpp-^2wv. ' ___

This example might also have been advantageously solved by cylindrical co-

ordinates. The fixed axis might be taken as axis of z and the projection on the

plane of xy referred to polar co-ordinates. This method of treating the question

is left to the student as an exercise.

Ex. If w be variable, we have in a similar manner

v^ du) IB= - + w2p + 2w»+-7r Jr^-p\
p at

EXAMPLES*.

1. A circular hoop, which is free to move on a smooth horizontal plane,

carries on it a small ring -th of its weight, the coefficient of friction between the

two being /x. Initially the hoop is at rest and the ring has an angular velocity w

about the centre of the hoop. Show that the ring will be at rest on the hoop

», ,. 1 + n
alter a time .

fJLU

* These examples are taken from the Examination Papers which have been set

in the University and in the Colleges.
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2. A heavy circular wire has its plane vertical and its lowest point at a height

h above a horizontal plane. A small ring is projected along the wire from its

highest point with an angular velocity about its centre equal to im a/ -r- at the

instant that the wire is let go. Show that when the wire reaches the horizontal

plane, the particle wiU just have described n revolutions.

3. A heavy imiform sphere rolls on a rough plane and is acted on by a fixed

centre of force in the plane varying inversely as the square of the distance ; if the

sphere be projected along the plane from a given point in it, in a direction opposite

to that of the centre of force, find the roughness of the plane at any point,

supposing the whole of it to be required.

4. Two equal uniform rods of length 2a, loosely jointed at one extremity, are

o, /2
placed symmetrically upon a fixed smooth sphere of radius ^ , and raised into

a horizontal position so that the hinge is in contact with the sphere. If they be

allowed to descend imder the action of gravity, show that, when they are first at

rest, they are inclined at an angle cos"^^ to the horizon, that the points of contact

with the sphere are the centres of oscillation of the rods relatively to the hinge,

that the pressure on the sphere at each point of contact equals one-fourth the

weight of either rod, and that there is no strain on the hinge.

5. Two circular discs are on a smooth horizontal plane ; one, whose radius is

n times that of the other, is fixed : an elastic string wraps round them so that those

portions of it not in contact with the discs are common interior tangents, the

natural length of the string being the sum of the circumferences. The moveable

disc is drawn from the other tiU the tension of the string is T, prove that if it be

now let go, the velocity acquired when it comes in contact with the fixed disc

will be ^ \/ , where m is the mass of the moYing disc, \ the

modulus of elasticity, a the radius of the moving disc.

6. Two straight equal and uniform rods are connected at their ends by two

strings of equal length a, so as to form a parallelogram. One rod is supported

at its centre by a fixed axis about which it can turn freely, this axis being perpen-

dicular to the plane of motion which is vertical. Show that the middle point of

the lower rod will oscillate in the same way as a simple pendulum of length a, and

that the angular motion of the rods is independent of this oscillation.

7. A fine string is attached to two points A, B va. the same horizontal plane,

and carries a weight W at its middle point. A rod whose length is AB and weight

W, has a ring at either end, through which the string passes, and is let fall from

the position AB. Show that the string must be at least ^AB, in order that the

weight may ever reach the rod.

Also if the system be in equilibrium, and the weight be slightly and vertically

displaced, the time of its small oscillations is 2ir k/-—p^

.

8. A fine thread is enclosed in a smooth circular tube which rotates freely]

about a vertical diameter
; prove that, in the position of relative equilibrium, the '.

inclination {0) to the vertical of the diameter through the centre of gravity of thej
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thread will be given by the equation cos^=

—

-^—-, where w is the aneular
aw^ cosjS °

velocity of the tube, a its radius, and 2aj8 the length of the thread. Explain the

case in which the value of aia^ cos/3 lies between g and - g.

9. A smooth wire without inertia is bent into the form of a helix which is

capable of revolving about a vertical axis coinciding with a generating line of the

cylinder on which it is traced. A small heavy ring slides down the helix, starting

from a point in which this vertical axis meets the heUx: prove that the angular

velocity of the heUx will be a maximum when it has turned through an angle

given by the equation cos^^ + tan^aH-^ sia2^=0, a being the inclination of the

helix to the horizon.

10. A spherical hollow of radius a is made in a cube of glass of mass M, and
a particle of mass m is placed within. The cube Is then set in motion on a smooth
horizontal plane so that the particle just gets round the sphere, remaining in

contact with it. If the velocity of projection be F, prove that V^=5ag+4ag jrj..

11. A perfectly rough ball is placed within a hoUow cylindrical garden-roller at

its lowest point, and the roller is then drawn along a level walk with a uniform

velocity V. Show that the ball will roU quite round the interior of the roller, if

V^ be >^g {i-a), a being the radius of the ball, and b of the roller.

12. AB, BC are two equal uniform rods loosely jointed at B, and moving with

the same velocity in a direction perpendicular to their length; if the end A be

suddenly fixed, show that the initial angular velocity of AB is three times that

of BC. Also show that in the subsequent motion of the rods, the greatest angle

between them equals cos~^|, and that when they are next in a straight line, the

angular velocity oiBG is nine times that of AB.

13. Three equal heavy uniform beams jointed together are laid in the same

right line on a smooth table, and a given horizontal impulse is applied at the

middle point of the centre beam in a direction perpendicular to its length ; show

that the instantaneous impulse on each of the other beams is one-sixth of the

given impulse.

14. Three beams of like substance, joined together so as to form one beam,

are laid on a smooth horizontal table. The two extreme beams are equal in length,

and one of them receives a blow at its free extremity in a direction perpendicular

to its length. Determine the length of the middle beam in order that the greatest

possible angular velocity may be given to the third.

Result. If 771 be the mass of either of the outer rods, /Stti that of the inner rod,

P the momentum of the blow, w the angular velocity communicated to the third

rod, then mau ( -x+ 7; + -^)=P- Hence when w is a maximum j8= J >J3.
\P 3 3/

15. Two rough rods A, B are placed parallel to each other and in the same

horizontal plane. Another rough rod C is laid across them at right angles, its

, centre of gravity being half way between them. If C be raised through any angle a

and let fall, determine the conditions that it may oscillate, and show that if its

length be equal to twice the distance between A and B, the angle 6 through which

ny .

it will rise in the 71*'' oscillation is given by the equation 8m^= I

^ J
. smo.
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16. A rod moveable in a vertical plane about a hinge at its upper end has a

given uniform rod attached to its lower end by a hinge about which it can turn

freely in the same vertical plane as the upper rod ; at what point must the lower

rod be struck horizontally in that same vertical plane that the upper rod may
initially be unaffected by the blow ?

17. A ball spinning about a vertical axis moves on a smooth table and impinges

directly on a perfectly rough vertical cushion ; show that the vis viva of the ball

is diminished in the ratio 10 + 14 tan^^ ; _ + 49 tan*^, where e is the elasticity of

the ball and d the angle of reflexion.

18. A rhombus is formed of four rigid uniform rods, each of length 2a, freely

jointed at their extremities. K the rhombus be laid on a smooth horizontal table

and a blow be appUed at right angles to any one of the rods, the rhombus will begin

to move as a rigid body if the blow be applied at a point distant a (1 - cos a) from

an^cute angle, where a is the acute angle.

19. A rectangle is formed of four uniform rods of lengths 2a and 26 respectively,

which are cormected by hinges at their ends. The rectangle is revolving about its

centre on a smooth horizontal plane with an angular velocity n, when a point

in one of the sides of length 2a suddenly becomes fixed. Show that the angular

velocity of the sides of length 26 immediately becomes ^

—

jz n. Find also the

change in the angular velocity of .the other sides and the impulsive action at the

point which becomes fixed.

20. Three equal uniform inelastic rods loosely jointed together are laid in

a straight line on a smooth horizontal table, and the two outer ones are set in

motion about the ends of the middle one with equal angular velocities (1) in the

same direction, and (2) in opposite directions. Prove that in the first case, when

the outer rods make the greatest angle with the direction of the middle one pro-

duced on each side the common angular velocity of the three is -y, and in the

second case after the impact of the two outer rods the triangle formed by them wiU

move with uniform velocity -^ , 2a being the length of each rod.

2^1. An equilateral triangle formed of three equal heavy uniform rods of length

a hinged at their extremities is held in a vertical plane with one side horizontal and

the vertex downwards. If after falling through any height, the middle point of the

upper rod be suddenly stopped, the impulsive strains on the upper and lower hinges

will be in the ratio of ^13 to 1. If the lower hinge would just break if the system

fell through a height —^ , prove that if the system fell through a height —p the

lower rods would just swing through two right angles.

22. A perfectly rough and rigid hoop rolling down an inclined plane comes ittj

contact with an obstacle in the shape of a spike. Show that if the radius of thej

hoop=r, height of spike above the plane ^ and F= velocity just before impact, theni

the condition that the hoop will surmount the spike is V^> i^gr |l-sin(o+^)|
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a being the inclination of the plane to the horizon. Show that unless

F2<V-5'r-sin^a + j),

the hoop wiU not remain in contact with the spike at all. If this inequality be

satisfied the hoop wiU leave the spike when the diameter thi-ough the point of

contact makes an angle with the horizon = sin~^ |-^ hisin(a + -)J.
[32 gr \ 6/)

23. A flat circular disc of radius a is projected on a rough horizontal table,

which is such that the friction upon an element a is cV^ma, where V is the velocity

of the element, m the mass of a unit of area : find the path of the centre of the disc.

If the initial velocity of the centre of gravity and the angular velocity of the

disc be UqUq, prove that the velocity u and angular velocity w at any subsequent

time satisfy the relation I
-—5 —- ) =—^—

.

24. A heavy circular lamina of radius a and mass M rolls on the inside of a

rough circular arc of twice its radius fixed in a vertical plane. Find the motion.

If the lamina be placed at rest in contact with the lowest point, the impulse which
must be applied horizontally that it may rise as high as possible (not going all

round), without faUrng off, is M ^JSag.

25. A string without weight is coiled round a rough horizontal cylinder, of

which the mass is M and radius a, and which is capable of turning round its axis.

To the free extremity of the string is attached a chain of which the mass is m and

the length I ; if the chain be gathered close up and then let go, prove that if 6 be

the angle through which the cylinder has turned after a time t before the chain is

fully stretched, Mae=^ (^ - adj

26. Two equal rods AC, BG are freely connected at C, and hooked to A and B,

two points in the same horizontal line, each rod being then inclined at an angle a to

the horizon. The hook B suddenly giving way, prove that the direction of the strain

,,.„,,, , , ,
,/l + 6sin2a 2-3cos2a\

at G IS mstantaneously shifted through an angle tan~i I
:j
—^ 5- . „ . ) .

•' DO \l + bcos''a d sma cosa/

27. Two particles A, B are connected by a fine string ; A rests on a rough

horizontal table and B hangs vertically at a distance I below the edge of the table.

If A be on the point of motion and B be projected horizontally with a velocity w,

show that A will begin to move with acceleration ^ — , and that the initial radius
//,+ ! I

of curvature of B's path wiU be (m + 1) I, where /* is the coefficient of friction.

28. Two particles (m, m') are connected by a string passing through a small

fixed ring and are held so that the string is horizontal ; then: distances from the

ring being a and a', they are let go. If p, p' be the initial radii of curvature of

ii • ii 1^^
^"ni in' T 1 1 1 1

their paths, prove that — ——.
, and - + -; = - + -..

p p p p a a

29. A sphere whose centre of gravity is not in its centre is placed on a rough

table ; the coefficient of friction being fi, determine whether it will begin to slide

or to roll.
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30. A circular ring is fixed in a vertical position upon a smooth horizontal

plane, and a small ring is placed on the circle, and attached to the highest point

by a string, which subtends an angle a at the centre
;
prove that if the string be

cut and the circle left free, the pressures on the ring before and after the string

is cut are in the ratio M+m sin' a : ilf cosa, m and M being the masses of the

ring and circla

31. One extremity (7 of a rod is made to revolve with uniform angular velocity

n in the circumference of a circle of radius a, while the rod itself is made to revolve

in the opposite direction with the same angular velocity about that extremity. The

rod initially coincides with a diameter, and a smooth ring capable of sUding freely

along the rod is placed at the centre of the circle. If r be the distance of the ring

from C at the time t, prove r=-=- (e"*+ e-"') + = co82nt.
o o

32. Two equal uniform rods of length 2a are joined together by a hinge at one

extremity, their other extremities being connected by an inextensible string of

length 21. The system rests upon two smooth pegs in the same horizontal line,

distant 2c from each other. If the string be cut prove that the initial angular

acceleration of either rod wiU be a _ ,.a ^^ . j> .

SaW 32a*c* . „ ,

33. A smooth horizontal disc revolves with angular velocity ^fjj. about a

vertical axis at which is placed a material particle attracted to a certain point of

the disc by a force whose acceleration is fix distance ; prove that the path on the

disc will be a cycloid.



CHAPTER V.

MOTION OF A RIGID BODY IN THREE DIMENSIONS.

Translation and Rotation.

214. If the particles of a body be rigidly connected, then
whatever be the nature of the motion generated by the forces,

there must be some general relations between the motions of the

particles of the body. These must be such that if the motion of

three points not in the same straight line be known, that of every

other point may be deduced. It will then in the first place be
our object to consider the general character of the motion of

a rigid body apart from the forces that produce it, and to reduce

the determination of the motion of every particle to as few in-

dependent quantities as possible : and in the second place we
shall consider how when the forces are given these independent

quantities may be found.

215. One point of a moving rigid body being fixed, it is re-

quired to deduce the general relations between the motions of the

other points of the body.

Let be the fixed point and let it be taken as the centre of

a moveable sphere which w^e shall suppose fixed in the body.

Let the radius vector to any point Q of the body cut the sphere

in P, then the motion of every point Q of the body will be repre-

sented by that of P.

If the displacements of two points A, B, on the sphere in any

time be given as AA', BB', then clearly the displacement of any

other point P on the sphere may be found by constructing on

A'B' as base a triangle A'P'F similar and equal to APB. Then
PP' will represent the displacement of P. It may be assumed as

evident, or it may be proved as in Euclid, that on the same base

and on the same side of it there cannot be two triangles on the

same sphere, which have their sides terminated in one extremity

of the base equal to one another, and likewise those terminated in

the other extremity.

Let D and E be the middle points of the arcs AA', BB\ and

let DC, EG be arcs of great circles drawn pei-pendicular to AA'

,
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BB' respectively. Then clearly GA = GA' and GB^CB', and
therefore since the bases AB, A'B' are equal, the two triangles

B^E~W'

AGB, A'GB are equal and similar. Hence the displacement of

G is zero. Also it is evident since the displacements of and G
are zero, that the displacement of every point in the straight line

OG is also zero.

Hence a body may he broughtfrom any position, which we may
call AB, into another A'B' by a rotation about OC as an axis

through an angle POP' such that any one point P is brought into

coincidence with its new position P'. Then every point of the body
will be brought from its first to its final position.

216. If we make the radius of the sphere infinitely great,

the various circles in the figure will become straight lines. We
may therefore infer that if a body be moving in one plane it may
be brought from any position which we may call AB into any
other A'B' by a rotation about some point G.

217. Ex. 1. A body is referred to rectangular axes x, y, z,
|
x', y', sf

and the origin remaining the same the axes are changed to

sd, y', z', according to the scheme in the margin. Show that this

is equivalent to turning the body round an axis whose equations

are any two of the following three

:

(a^-1) x+ a^y + a.iZ = 0,

bjX+ {b2-l)y+ bsZ=0,

CiX+ c^y + {cs-l)z=0,
a

through an angle 6, where 3-4 sin^ n=(h + ^i + ^3-
a

Show that the condition that these three equations are consistent is satisfied.

Take two points one on each of the axes of z and 2' at a distance Ti from thej

origin. Their co-ordinates are (0, 0, h) (a^h, b^h, c^h), therefore their distance

X «1. Os. «8

y h> h. 63

z H> Cj, ^8

s/2(l-ca)ft. But it is also 2h sin^ sin^; 2 sin* g sin'7= 1 - Cg. We have
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6
similar reasoning 2 sin^- sin2a = 1 - a^ and 2 sin^- sin2/3= 1 - J^, whence the

equation to find 6 follows at once.

Ex. 2. Show that the equations to the axis may also be written

^ ^ y _ z

Cj + a, Cg+ 63 C3 - a^ - &^ + 1
*

218. When a body is in motion we have to consider not
merely its first and last positions, but also the intermediate posi-

tions. Let us then suppose AB, A'B to be two positions at any
indefinitely small interval of time dt. We see that when a body
moves about a fixed point 0, there is, at every instant of the
motion, a straight line OG, such that the displacement of every
point in it during an indefinitely short time dt is zero. This
straight line is called the instantaneous axis.

Let dd be the angle through which the body must be turned
round the instantaneous axis to bring any point P from its posi-

tion at the time t to its position at the time t-{-dt, then the
ultimate ratio of d6 to dt is called the angular velocity of the

body about the instantaneous axis. The angular velocity may
also be defined as the angle through which the body would turn
in a unit of time if it continued to turn uniformly about the

same axis throughout that unit with the angular velocity it had
at the proposed instant.

219. Let us now remove the restriction that the body is

moving with some one point fixed. We may establish the fol-

lowing proposition.

Every displacement of a rigid body may he represented by a
combination of the two following motions, (1) a motion of trans-

lation whereby every particle is moved parallel to the direction of
motion of any assumed point P rigidly connected with the body

and through the same space. (2) A motion of rotation of the whole

body about some axis through this assumed point P.

This theorem and that of the central axis are given by Chasles. Bulletin des

Sciences Mathematiques, vol. xiv. 1830.

It is evident that the change of position may be effected by
moving P from its old to its new position F' by a motion of trans-

lation and then retaining P' as a fixed point by moving any two

points of the body not in one straight line with P into their

final positions. This last motion has been proved to be equivalent

to a rotation about some axis through P'.

Since these motions are quite independent, it is evident that

their order may be reversed, i.e. we may rotate the body first and

then translate it. We may also suppose them to take place

simultaneously.

R. D. 18
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It is clear that any point P of the body may be chosen as the

base point of the double operation. Hence the given displace-

ment may be constructed in an infinite variety of ways.

'f- 220. Change of Base. To find the relations between the

axes and angles of rotation when different points P, Q are chosen as

bases.

Let the displacement of the body be represented by a rotation

,

6 about an axis PR and a translation PP'. Let the same dis-'

placement be also represented by a rotation 6' about an axis QS
and a translation QQ'. It is clear that any point has two dis-

placements, (1) a translation equal and parallel to PP', and (2) a

rotation through an arc in a plane perpendicular to the axis of

rotation PR. This second displacement is zero only when the

point is on the axis PR. Hence the only points whose displace-

ments are the same as the base point lie on the axis of rotation

corresponding to that base point. Through the second base point

Q draw a parallel to PR. Then for all points in this parallel, the

displacements due to the translation PP', and the rotation

round PR, are the same as the corresponding displacements for

the point Q. Hence this parallel must be the axis of rotation

corresponding to the base "point Q. We infer that the axes of
rotation corresponding to all base points are parallel.

221. The axes of rotation at P and Q having been proved
parallel, let a be the distance between them. The rotation

about PR wiU cause Q to describe an arc of a circle of radius a
a

and angle 0, the chord Qq of this arc is 2a sin ^ and is the dis-

placement due to rotation. The whole displacement of Q is the

resultant of Qq and the displacement of P. In the same way the

rotation 0' about QS will cause P to describe an arc, whose chord
0'

Pp is equal to 2tt sin ^ . The whole displacement of P is the

resultant of Pp and the displacement of Q. But if the displace-

ment of Q is equal to that of P together with Qq, and the dis-

placement of P is equal to that of Q together with Pp, we must
have Pp and Qq equal and opposite. This requires that the two
rotations 0, 0' about PR and QS should be equal and in the same
direction. We infer that the angles of rotation corresponding to

all base points are equal.

222. Since the translation QQ' is the resultant of PP' and

Qq, we may by this theorem find both the translation and rotation

corresponding to any proposed base point Q when those for P are

given.

Since Qq, the displacement due to rotation round PR, is per-

pendicular to PR, the projection of QQ' on the axis of rotation is

11
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the same as that of PP'. Hence the projections on the axis of rota-

tion of the displacements of all points of the body are equal.

223. An important case is that in which the displacement is

a simple rotation 6 about an axis PR without any translation. If

any point Q distant a from PR be chosen as the base, the same
displacement is represented by a translation of Q through a chord

Q a

Qq = 2a sin ^ in a direction making an angle — - with the plane

QPR and a rotation which must be equal to 6 about an axis which
must be parallel to PR. Hence a rotation about any axis may be

replaced by an equal rotation about any parallel axis together with

a motion of translation.

224. When the rotation is indefinitely small, the proposition

can be enunciated thus, a motion of rotation cddt about an axis

PR is equivalent to an equal motion of rotation about any parallel

axis Q8, distant a from PR, together with a motion of translation

aoidt perpendicular to the plane containing the axes and in the

direction in which QS moves,

225. Central axis. It is often important to choose the

base point so that the direction of translation may coincide with

the axis of rotation. Let us consider how this may be done.

Let the given displacement of the body be represented by a

rotation 6 about PR, and a translation PP'. .
Draw P'N perpendi-

cular to PR. If possible let this same displacement be represented^

by a rotation about an axis Q8, and a translation QQ' along QS. By
Arts. 220 and 221 QS must be parallel to PR and the rotation about

it must be 0. This translation will move P a length equal to QQ'

13—2
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along PR, and the rotation, about QS will move P along an arc

perpendicular to PB. Hence QQ' must equal PN and NP" must

be the chord of the arc. It follows that QS must lie on a plane

bisecting NP' at right angles and at a distance a from PR where
a

iVP' = 2a sin ^ , or, which is more convenient, at a distance y from
^

the plane IfPP' where NP' = 2y tan -
. The rotation round QS

is to bring ^ to P' and is in the same direction as the rotation

round PR. Hence the distance y must be measured from the

middle point of NP' in the direction in which that middle point

is moved by its rotation round PR.

Having found the only possible position of QS, it remains to

show that the displacement of Q is really along QS. The rotation

round PR will cause Q to describe an arc whose chord Qq is
o

parallel to P'N and equal to 2a sin -
. The chord Qq is therefore

equal to NP, and the translation NP brings q back to its position

at Q. Hence Q is only moved by the translation PN, i.e. Q is

moved along QS.

226. It follows from this reasoning that any displacement of

a body can be represented by a rotation about some straight line

and a translation 'parallel to that straight line. This mode of con-

structing the displacement is called a screw. The straight line is

sometimes called the central axis and sometimes the aads of the

screw. The ratio of the translation to the angle of rotation is

called the pitch of the screw.

227. The same displacement of a body cannot be constructed

by two different screws. For if possible let there be two central

axes AB, CD. Then AB and CD by Art. 220 are parallel. The
displacement of any point Q on CD is found by turning the body
round AB and moving it parallel to AB, hence Q has a displace-

ment perpendicular to the plane ABQ and therefore cannot move
only along CD.

228. When the rotations are indefinitely small, the construc-
tion to find the central axis may be simply stated thus Let the

displacement be represented hy a rotation eodt about an axis PR
and a translation Vdt in the direction PP'. Measure a distance .

VsinP'PR ^ -n 7. . 7 , ^/.^^
y = from P perpendicular to the plane P PR on that

j

side of the plane towards which P' is moving. A parallel to P^i
through the extremity of j is the central axis. fll

196. Ex. 1. Given the displacements AA', BB', CC of three points of a body
'

in direction and magnitude, but not necessarily in position, find the direction^
the axis of rotation corresponding to any base point P.

I
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Through any assumed point draw Oa, 0/3, Oy parallel and equal to AA', BB',

CC. If Op be the direction of the axis of rotation, the projections of Oa, 0/3, Oy
on Op are all equal. Hence Op is the perpendicular drawn from on the plane

a/37. This also shows that the direction of the axis of rotation is the same for

aU base points.

Ex. 2. If in the last example the motion be referred to the central axis, show
that the translation along it is equal to Op.

Ex. 3. Given the displacements A A', BB' of two points A, B oi the body and
the direction of the central axis, find the position of the central axis. Draw
planes through AA', BB' parallel to the central axis. Bisect AA', BB' by planes

perpendicular to these planes respectively and parallel to the direction of the central

axis. These two last planes intersect in the central axis.

Composition of Rotations and Screws.

229. It is often necessary to compound rotations about axes

OA, OB which meet at a point 0. But as the only case which
occurs in Rigid Dynamics is that in which these rotations are

indefinitely small we shall first consider this case with some par-

ticularity, and then indicate generally at the end of the chapter
the mode of proceeding when the rotations are of finite magnitude.

230. To explain what is meant hy a body having angular

velocities about more than one axis at the same time.

A body in motion is said to have an angular velocity <o about

a straight line, when, the body being turned round this straight

line through an angle wdt, every point of the body is brought

from its position at the time t to its position at the time t + dt.

Suppose that during three successive intervals each of time dt,

the body is turned successively round three different straight lines

OA, OB, 00 meeting at a point through angles oy^dt, (o^dt,

a^dt. Then we shall first prove that the final position is the same
in whatever order these rotations are effected. Let P be any

point in the body, and let its distances from OA, OB, OG, respect-

ively be r^, r^, r^. First let the body be turned round OA, then

P receives a displacement w^r^dt. By this motion let r^ be in-

sreased to r2 + c^r^, then the displacement caused by the rotation

ibout 05 will be in magnitude a)^{r^ + dr^dt. But according to

ihe principles of the Differential Calculus we may in the limit

oieglect the quantities of the second order, and the displacement

)ecomes co^r^t. So also the displacement due to the remaining

•otation will be (o^r^dt. And these three results will be the same

D whatever order the rotations take place. In a similar manner
¥e can prove that the directions of these displacements will be

ndependent of the order. The final displacement is the diagonal

>f the parallelopiped described on these three lines as sides, and
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is therefore independent of the order of the rotations. Since then
the three rotations are quite independent, they may be said to

take place simultaneously.

When a body is said to have angular velocities about three

different axes it is only meant that the motion may be determined

as follows. Divide the whole time into a number of small in-

tervals each equal to dt. During each of these, turn the body
round the three axes successively, through angles co^dt, co^dt, co^dt.

Then when dt diminishes without limit the motion during the

whole time will be accurately represented.

231. It is clear that a rotation about an axis OA may be
represented in magnitude by a length measured along the axis.

This length will also represent its direction if we follow the same
rule as in Statics, viz. the rotation shall appear to be in some
standard direction to a spectator placed along the axis so that

OA is measured from his feet at towards his head. This di-

rection of OA is called the positive direction of the axis.

232. Parallelogram of angular velocities. If two an-

gular velocities about two awes OA, OB be represented in magnitude
and direction by the two lengths OA, OB ; then the diagonal OC of
the parallelogram constructed on OA, OB as sides will be the

resultant a^cds of rotation, and its length will represent the magni-
tude of the resultant angular velocity.

Let P be any point in OG, and let PM, PN be drawn per-

pendicular to OA, OB. Since OA represents the angular ve-

locity about OA and PM is the perpendicular distance of P
from OA, the product OA . PM will represent the velocity of P
due to the angular velocity about OA. Similarly OB . PN will

represent the velocity of P due to the angular velocity about
OB. Since P is on the left-hand side of OA and on the right-

hand side of OB, as we respectively look along these directions,

it is evident that these velocities are in opposite directions.

Hence the velocity of any point P is represented by

OA.PM-OB.PN
- =OP{OA.&mCOA-OB.BmCOB]

= 0.
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Therefore the point P is at rest and OG is the resultant axis
of rotation.

Let (0 be the angular velocity about OC, then the velocity
of any point A in OA is perpendicular to the plane A OB and is

represented by the product of w into the perpendicular distance
of A from OC = a). OA sin COA. But since the motion is also

determined by the two given angular velocities about OA, OB, the
motion of the point A is also represented by the product of OB
into the perpendicular distance of A from 0B= OB . OA sin BOA;

r»R sin 50^
. . ft) = OB .

-. 777=r-i = O C.
sm COA

Hence the angular velocity about 00 is represented in mag-
nitude by OC.

From this proposition we may deduce as a corollary "the
parallelogram of angular accelerations." For if OA, OB repre-

sent the additional angular velocities impressed on a body at

any instant, it follows that the diagonal OC will represent the
resultant additional angular velocity in direction and magnitude.

233. This proposition shows that angular velocities and an-

gular accelerations may be compounded and resolved by the same
rules and in the same way as if they were forces. Thus an an-

gular velocity w about any given axis may be resolved into two,

0) cos a. and w sin a, about axes at right angles to each other and

making angles a and ^ — a with the given axis.

If a body have angular velocities co^, co^, Wg about three axes

Ox, Oy, Oz at right angles, they are together equivalent to a

single angular velocity w, where (o = J<o^ + «/ + w^, about an
axis making angles with the given axes whose cosines are re-

spectively — ,
—

,
—

. This may be proved, as in the corre-(0(0(0
spending proposition in Statics, by compounding the three angular

velocities, taking them tw^o at a time.

It will however be needless to recapitulate the several propo-

sitions proved for forces in Statics with special reference to an-

gular velocities. We may use " the triangle of angular velocities
"

or the other rules for compounding several angular velocities

together, without any further demonstration.

234. The Angular Velocity couple. A body has angular

velocities (o, (o about two parallel axes OA, OB distant a from
each other, to find the resulting motion.

Since parallel straight lines may be regarded as the limit of

two straight lines which intersect at a very great distance, it
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follows from the parallelogram of angular velocities that the two
given angular velocities are equivalent to an angular velocity

about some parallel axis 0"G lying in the plane containing OA,
O'B.

Let cc be the distance of this axis from OA, and suppose it M
to be on the same side of OA as OB. Let Xl be the angular

velocity about it.

Consider any point P, distant y from OA .and lying in the

plane of the three axes. The velocity of P due to the rotation

about OA is wy, the velocity due to the rotation about O'B is

o)'{y — a). But these two together must be equivalent to the

velocity due to the resultant angular velocity D, about 0"C, and
this is II ( 2/ — a?),

••• a)y+o)'{y-a)=n{y- oc).

This equation is true for all values of y, .'. XI = to + a, x = -^

.

This is the same result we should have obtained if we had
been seeking the resultant of two forces a, to acting along OA,
OB.

If to = — fo , the resultant angular velocity vanishes, but x is in-

finite. The velocity of any point P is in this case (oy + (o'{y — a) = aco,

which is independent of the position of P.

The result is that two angular velocities, each equal to to but
tending to turn the body in opposite directions about two parallel

axes at a distance a from each other, are equivalent to a linear

velocity represented by aco. This corresponds to the proposition

in Statics that " a couple " is properly measured by its moment.

We Tnay deduce as a corollary, that a motion of rotation (o

about an axis OA is equivalent to an equal motion of rotation

about a parallel axis O'B plus a motion of translation aco perpen-
dicular to the plane containing OA, O'B, and in the direction in

which O'B moves. See also Art. 223.

235. The analogy to Statics. To explain a certain analogy
which exists between Statics and Dynamics.

All propositions in Statics relating to the composition and
resolution of forces and couples are founded on these theorems

:

1. The parallelogram of forces and the parallelogram of
couples.

2. A force F is equivalent to any equal and parallel force

together with a couple Fp, where p is the distance between the
forces.

Corresponding to these we have in Dynamics the following
theorems on the instantaneous motion of a rigid body :
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1. The parallelogram of angular velocities and the parallelo-

gram of linear velocities.

2. An angular velocity w is equivalent to an equal angular
velocity about a parallel axis together with a linear velocity
equal to mp, where^ is the distance between the parallel axes.

It follows that every proposition in Statics relating to forces
has a corresponding proposition in Dynamics relating to the
motion of a rigid body, and these two may be proved in the
same way.

To complete the analogy it may be stated (i) that an angular
velocity like a force in Statics requires, for its complete determina-
tion, five constants, and (ii) that a velocity like a couple in Statics

requires but three. Four constants are required to determine the
line of action of the force or of the axis of rotation, and one to

determine the magnitude of either. There will also be a conven-
tion in either case to determine the positive direction of the line.

Two constants and a convention are required to determine the
positive direction of the axis of the couple or of the velocity and
one the magnitude of either.

236. In order to show the great utility of this analogy and
how easily we may transform any known theorem in Statics into

the corresponding one in Dynamics, we shall place in close juxta-

position the more common theorems which are in continual use

both in Statics and Dynamics.

It is proved in Statics that any given system of forces and
couples can be reduced to three forces X, Y, Z, which act along

any rectangular axes which may be convenient and which meet
at any base point we please, together with three couples which

we may call L, M, N and which act round these axes. A simpler

representation is then found, for it is proved that these forces and
couples can be reduced to a single force which we may call R
and a couple G which acts round the line of action of R. This line

of action of R is called the central axis. There is but one central

axis corresponding to a given system of forces. The term wrench

has been applied to this representation of a given system of forces.

Draw any straight line AB parallel to the central axis at a dis-

tance c from it. Then we may move R from the central axis to

act along AB at A, provided we introduce a new couple whose

moment is Re. Combining this with the couple G, we have for the

new base point A a new couple G' = JG' + R^c\ the force being

the same as before. The couple G' is a minimum when c = 0, i.e.

when AB coincides with the central axis. By taking moments
round AB we see that the moment of the forces round every

straight line parallel to the central axis is the same and equal to

the minimum couple.
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The same train of reasoning by which these results were ob-

tained will lead to the following propositions. The instantaneous

motion may be reduced to a linear velocity of any base point we
please and an angular velocity round some axis through the
base. These are then reduced to an angular velocity which we
may call II, about an axis called the central axis and a linear

velocity along that axis which we may call V. The term screw

has been applied to this representation of the motion. Draw any
straight line AB parallel to the central axis. Then we may move
II from the central axis to act round AB, provided we introduce

a new linear velocity represented by He. Combining this with
the velocity V we have for the new base A (which is any point

on 2^^) a new linear velocity V = ^¥'^+0^0.^, the angular velocity

being the same as before. The linear velocity V is a minimum,
when c=0, i.e. when AB coincides wdth the central axis. We
see that the linear velocity of any point A resolved in the direc-

tion AB, i.e. parallel to the central axis is always the same and
equal to the minimum velocity of translation.

It will be seen that most of these results have already been
obtained in Arts. 219 to 228, for finite rotations.

237. Another useful representation depends on the following

proposition. Any system of forces can be replaced by some force

F which acts along any straight line which we may choose at

pleasure, and some other force F' which acts along some other

line and does not in general cut the first force. These are called

conjugate forces. The shortest distance between these is proved

in Statics to intersect the central axis at right angles. The
directions and magnitudes of the forces F, F' are such that R
would be their resultant if they were moved parallel to them-
selves, so as to intersect the central axis. Also it is known that

if ^ be the angle between the directions of the forces F, F" and
a the shortest distance between them, then FF'a sin Q = QR.

By help of the analogy we may obtain the corresponding

propositions in the motion of a body. Any motion may be repre-

sented by two angular velocities, one to about any axis which we
may choose at plea,sure and another to' about some axis which
does not in general cut the first axis. These are called conjugate

axes. The shortest distance between these intersects the central

axis at right angles. These angular velocities are such that H
would be their resultant if their axes were placed parallel to

their actual positions, so as to intersect the central axis. If 6 be
the angle between the axes of w, co' and a be the shortest distance

between these axes, then coma sin = VR.

238. The velocity of any Point. The motion of a body
during the time dt may be represented, as explained in Art. 219,
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by a velocity of translation of a base point 0, and an angular

velocity about some axis through 0. Let us choose any three

rectangular axes Ox, Oy, Oz which may suit the particular pur-

pose we have in view. These axes meet in and move with 0,

keeping their directions fixed in space. Let u, v, w be the resolved

parts along these axes of the linear velocity of 0, and w^, o)^, m^,

the resolved parts of the angular velocity. These angular velo-

cities are supposed positive when they tend the same way round
the axes that positive couples tend in Statics. Thus the positive

directions of w^, co^, w^, are respectively from y to z, from z to x
and from x to y.

The whole motion during the time dt of the body is known
when these six quantities u, v, w, a>^, (o^, m^ are given. These six

quantities may be called the components of the motion. We now
propose to find the motion of any point P whose co-ordinates are

xyz.

Let us find the velocity of P parallel to the axis of z. Let PN
be the ordinate of z and let PM be drawn perpendicular to Ox.

The velocity of P due to the rotation round Ox is clearly co^PM.

Resolving this along NP we get to^PM sinNPM= co^y. Similarly

that due to the rotation about Oy is ~(o^x and that due to the

rotation about Oz is zero. Adding the linear velocity w of the

origin, we see that the whole velocity of P parallel to Oz is

w'=w+ (o^y — 6)^.

Similarly the velocities parallel to the other axes are

V =V + (O^X — 00jz.

239. It is sometimes necessary to change our representation

of a given motion from one base point to another. These formulae



204 MOTION IN THREE DIMENSIONS.

will enable us to do so. Thus suppose we wish our new base

point to be at a point 0', the axes at 0' being parallel to those at

0. Let (^, •j;, ^) be the co-ordinates of 0' and let u , v, w', oa^,

Wy, o)/ be the linear and angular components of motion for the

base 0'. We have now two representations of the same motion,

both these must give the same result for the linear velocities of

any point P. Hence

M + 6)^ - a),2/ = w + w; (^ - ^) - »; (2/
-

-7),

V + (o^x — (o^z = -y' + ft)/ (a? — ^) - f^x (^ ~ K)y

must be true for all values of x, y, z.

These equations give w^ = w^, o)/ = &),,, o)/ = <»j so that what-

ever base is chosen the angular velocity is always the same in

direction and magnitude. See Art. 221. We also see that w', v , w
are given by formulae analogous to those in Art. 238, as indeed

might have been expected.

The reader should compare these with the corresponding for-

mulae in Statics. If all the forces of any system be equivalent

to three forces X, Y, Z acting at a base point along three rect'

angular axes together with three couples round those axes, then

we know that the corresponding forces and couples for any other

base point ^, tj, ^ are

X' = X, r = L+Y^-Zn,
Y'=Y, M' = M+Z^-X^,
Z' = Z, N' =N+ Xri-Yl

240. To find the equivalent Screw. The motion being

given by the linear velocities (u, v, w) of some base O, and the

angular velocities {co^, co^, wj, find the central axis, the linear velo-

city along it and the angular velocity round it, i.e. find the equiva-

lent screw.

Let P be any point on the central axis, then if P were chosen

as base, the components of the angular velocity would be the same
as at the base 0. If then XI be the resultant of the angular

velocities co^, Wy, w^we see that

(1) The direction-cosines of the central axis are

cosa=^, cos^=^% cos7 = ^^

(2) The angular velocity about the central axis is fl.

(3) The velocity of every point resolved in a direction parallel

to the central axis is the same and equal to that along the central

i
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axis. See Art. 222 or Art. 236. If then V be the linear velocity
along the central axis we have

V= u cos oi + v cos y8 + w cos 7

;

(4) Let {x, y, z) be the co-ordinates of P, i. e. of any point
on the central axis. Then the linear velocity of P is along the
axis of rotation. Hence

u + <Wj,2 — oi,y _ v + (ojx — m^z _w + w^y — w^x '^

®x «v

~
«. ""

These are therefore the equations to the central axis.

If we multiply the numerator and denominator of each of

these fractions by tw^, oa^, co^ respectively and add them together,

we see that each fraction is

_ 11(0^ + VCOy + WO)^ _ V
«/+«/+&)/ ~ ^ '

This ratio is called the pitch of the screw.

241. The Invariant. It follows from the third result just

proved that whatever base be chosen and whatever be the direc-

tion of the axes, the quantity uw^ + vw^ -{- ww^ is invariable and
equal to Ffl. This quantity may therefore be called the invariant

of the components. The resultant angular velocity ft is also in-

variable and may be called the invariant of the rotation.

If the motion be such that the first of these invariants is zero,

it follows that either F = 0, or ft = 0. This therefore is the con-

dition that the motion is equivalent to either a simple translation or

a simple rotation. If we wish the motion to be equivalent to a

simple rotation, we must also have w^., w^, &>, not all zero.

The coiTesponding invariant in Statics is LX+MY+NZ= GR.
When this vanishes, the forces are equivalent to either a single

resultant or a single couple.

242. When the motion is equivalent to a simple rotation, it

may be required to find the axis of rotation. But this is obviously

only the central axis under another name, and has been found

above.

243. A screw motion may thus be given in two ways. We
may have given the six components of motion, which we have

called (w, v, w, cd^, w^, q>X which also depend on the point chosen

as base. Or it may be given by the equations to the central axis

the velocity V along it, and the angular velocity ft round it.

In this last case a convention is necessary to prevent confusion

as to the directions implied by the velocities V and ft. One
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direction of the axis is called the positive direction, and the op-

posite the negative direction. Then V is taken positive when it

implies a velocity in the positive direction. So also H is positive

when the rotation appears to be in the direction of the hands
of a watch, when viewed by a person placed with his back along

the axis, so that the positive direction is from his feet to his head.

This of course is only the ordinary definition of a positive couple

as given in Statics. See Art. 231.

The method of determining the positive direction of the axis

is easy to understand, though it takes long to explain. Describe

a sphere of unit radius with its centre at the origin, and let

the positive directions of the axes cut this sphere in x, y, z. Let
a parallel to the central axis drawn through the origin cut the

sphere in L and U . Let the direction-cosines of the axis be
given say, I, m, n. Then (Imn) are the cosines of certain arcs

drawn on the sphere which begin at xyz, and terminate say at i,

while (— I, —m, — n) are the cosines of supplementary arcs which

begin at the same points j-yz, and terminate at L'. Then OL is

the positive direction of the axis and OL' the negative direction.

244. The position of the central axis being given, together with

the linear velocity along it and the angular velocity round it. It is

required to find the components of the motion when the origin is

taken as the base.

This is of course the converse proposition to that just discussed.
/v* ^_ -t- yy ^^ rj 2! ^— h.

Let the equation to the central axis be —j^ = -—- =
,Imn

where (Imn) are the actual direction cosines of the axis. Let V be
the linear and fl the angular velocity.

If (fgh) were taken as the base, the components of the linear

velocities would he IV, mV, n V, and the components of the angular

velocities would be ID,, niD,, vfl. Hence by Art. 238, writing —/,
— g, —h for X, y, z, the components of the motion when the origin

is the base point are

u = IV— n (mh — ng), w, = ID,

V = mV— D, (nf — Ih), &>, = mfi,

w =nV — D {Ig —mf), a)^ = nD.

245. Composition and Resolution of Screws. Given two

screw motions to compound them into a single screw and conversely

given any screw motion to resolve it into two screws.

Two screws being given, let us choose some convenient base

and axes. By Art. 244 we may find the six components of motion
of each screw for this base. Adding these two and two, we have
the six components of the resultant screw. Then by Art. 240 the
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central axis together with the linear and angular velocities of

the screw may be found.

Conversely, we may resolve any given screw motion into two
screws in an infinite number of ways. Since a screw motion is

represented by six components at any base we have in the two
screws twelve quantities at our disposal. Six of these are re-

quired to make the two screws equivalent to the given screw. We
may therefore in general satisfy six other conditions at pleasure.

Thus we may choose the axis of one screw to be any given
straight line we please with any linear velocity along it and any
angular velocity round it. The other screw may then be found
by reversing this assumed screw and joining it thus changed to

the given motion. The screw equivalent to this compound motion
is the second screw, and it may be found in the manner just

explained.

Or again, we may represent the motion by two screws whose
pitches are both chosen to be zero, the axis of one being arbitrary.

These are the conjugate axes spoken of in Art. 237.

246. Examples. Ex. 1. The locus of points in a body moving about a fixed

point which at any instant have the same resultant velocity is a circular cylinder.

Ex. 2. A body has an angular velocity fl about an axis whose equation is

—7-^ = -— = , find the resolved velocities parallel to the axes of any point
I m n

whose co-ordinates are (f, ri, f).

Ex. 3. A body has equal angular velocities about two axes which neither meet

nor are parallel. Prove that the central axis is equally inclined to each. Find

also the linear velocity along the central axis and the angular velocity round it.

Ex. 4. If radii vectores be drawn from a fixed point to represent in direction

and magnitude the velocities of all points of a rigid body in motion, prove that the

extremities of these radii vectores at any one instant lie in a plane. [Coll. Exam.]

This plane is evidently perpendicular to the central axis and its distance from O

measures the velocity along the axis.

Ex. 5. The locus of the tangents to the trajectories of different points of the

same straight line in the instantaneous motion of a body is a hyperbolic paraboloid.

Let AB be the given straight line, CD its conjugate. The points on AB are

turning round CD, and therefore the tangents all pass through two straight Unes,

viz. AB and its consecutive position A'B', and are also all parallel to a plane which

is perpendicular to CD.

Ex. 6. Two screws (V, 0), (V, 0') have their axes inclined at an angle 6. If

the axes intersect the invariant of the components of the motion is

FO + F'fl'+ (Vil'+ F'fi) cos d.

If the axes do not intersect, let D be their shortest distance, then we add to the

above expression fifi'D sin 6.

Ex. 7. A motion is represented by angular velocities Oj, Oj, &c. about any

axes. If D be the shortest distanc3 between any two axes, say with angular
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velocities 12, Q', and the angle between these axes, then the invariant of the

motion is Sfifl'D sin^, where S implies summation for every combination of axes

taken two and two.

Ex. 8. Let the restraints on a body be such that it admits of two motions

A and B, each of which may be represented by a screw motion, and let m, m' be the

pitches of these screws. Then the body must admit of a screw motion compounded

of any indefinitely small rotations wdt, u'dt about the axes of these screws accom-

panied of course by the translations mwdt, m'u'dt. Prove that (1) the locus of the

axes of all these screws is the surface z{x^ + y^) = 2axy. (2) If the body be screwed

along any generator of this surface the pitch is c + a cos 20, where c is a constant

which is the same for all generators and is the angle the generator makes with the

axis of X. (3) The size and position of the surface being chosen so that the two

given screws A and B lie on the surface with their appropriate pitch, show that only

one surface can be drawn to contain two given screws. (4) If any three screws of

the surface be taken and a body be displaced by being screwed along each of these

through a smaU angle proportional to the sine of the angle between the other two,

the body after the last displacement will occupy the same position that it did

before the first.

This surface has been called the cylindroid by Prof. Ball, to whom these fonr-

theorems are due.

Ex. 9. If the instantaneous motion of a body be represented by two conjngate

angular velocities w, w', the axis of the resultant screw intersects at right angles

the shortest distance between the conjugate axes. Let 7, 7' be the angles the

conjugate axes make with the axis of their resultant, a the angle they make with

each other, c, c' the shortest distances between the conjugate axes and the axis of

the screw, V and the linear and angular velocities of the screw, then prove that

c tan7'=c'tan7=—

,

w w' O CO) _ c'w' _ V
siny ~ sin7 sin a' C0S7' cos7 sin a

The first set follows from Art. 237. The second expresses the fact that the

direction of the linear motion of the point where the axis cuts the shortest distance

is along the axis of the screw.

Ex. 10. An instantaneous motion is given by the linear velocities (u, v, w)

along and the angular velocities (w,., Wy, w,) round the co-ordinate axes. It is

required to represent this by two conjugate angular velocities, one being about the

-f ^ y-9 _z-h
I m n

straight line

If be the angular velocity about the given axis, then

MW- + V(j3„+ WW. ,—

5

-^ ' =lu + mv + nw -

where {I, in, n) are the actual direction-cosines.

The equations to the conjugate axes are

X, y, z = lu + mv + nw, Xf Vi 2

Wx, «iri «« U>X, Uy, W
I, m, n /, 9, h

f, ff, h

I, m, n

= {f-x)u + (g-y)v + {h-mz) w.

These general equations will be simplified if the circumstances of any proble

permit the co-ordinate axes to be so chosen that some of the constants may be zero.!
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The first of these equations may be obtained as indicated in Art. 245. Eeverse
fi and join it to the given motion, then the invariant of this compound motion
vanishes. If the angular velocity be thus supposed known, the conjugate axis

is the central axis of the compound motion and may be found as in Art. 245. But
if the conjugate axis be required independently of Q, we may use the second and
third equations.

The second equation follows from the fact that the direction of motion of any
point on the conjugate is perpendicular to the given axis.

The third follows from the fact that the direction of motion is also perpendicular

to the straight line joining the point to (/, g, h).

Ex. 11. If one conjugate of an instantaneous motion is at right angles to the

central axis the other meets it, and conversely. If one conjugate is parallel to the

central axis the other is at an infinite distance, and conversely.

Ex. 12. A body is moved from any position in space to any other, and every

point of the body in the first position is joined to the same point in the second

position. If all the straight lines thus found be taken which pass through a given

point, they will form a cone of the second order. Also if the middle points of all

these lines be taken, they will together form a body capable of an infinitesimal

motion, each point of it along the line on which the same is situate. Cayley's

Report to the British Assoc, 1862.

247. Cbaracteristic and focus. If the instantaneous motion of a body be

represented by two conjugate rotations about two axes at right angles, a plane can

be drawn through either axis perpendicular to the other. The axis in the plane

has been called the characteristic of that plane, and the axis perpendicular to the

plane is said to cut the plane in its focus. These names were given by M. Chasles

in the Gomptes Rendus for 1843. Some of the following examples were also given

by him, though without demonstrations.

Ex. 1. Show that every plane has a characteristic and a focus.

Let the central axis cut the plane in 0. Eesolve the linear and angular velocities

in two directions Ox, Oz, the first in the plane and the second perpendicular to it.

The translations along Ox, Oz may be removed if we move the axes of rotation

Ox, Oz parallel to themselves, by Art. 234. Thus the motion is represented by

a rotation about an axis in the plane and a rotation about an axis perpendicular

to it. It also follows that the characteristic of a plane is parallel to the projection

of the central axis.

Ex. 2. If a plane be fixed in the body and move with the body, it intersects

its consecutive position in its characteristic. The velocity of any point P in the

plane when resolved perpendicular to the plane is proportional to its distance from

the characteristic, and when resolved in the plane is proportional to its distance

from the focus and is perpendicular to that distance.

Ex. 3. If two conjugate axes cut a plane in F and G, then FG passes through

the focus.

If two conjugate axes be projected on a plane, they meet in the characteristic

of that plane.

Ex. 4, If two axes CM, CN meet in a point C, their conjugates lie in a plane

whose focus is G and intersect in the focus of the plane GMN.

This follows from the fact that if a straight line cut an axis the direction of

R. D. 14
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motion of every point on it is perpendicular to the straight line only when it also

cuts the conjugate.

Ex. 5. Any two axes being given and their conjugates, the four straight lines

lie on the same hyperboloid.

Ex. 6. If the instantaneous motion of a body be given by the linear and

angular velocities (w, v, w) (wj, w^, Wg), prove that the characteristic of the plane

Ax +By+Cz+D=0
is its intersection with A{u-\- u^z - w^y) + B (v +w^ - w^z) + C{w + w^y- w^x) = 0,

and its focus may be found from ^
^ = ^ i- =—^

•

For the characteristic is the locus of the points whose directions of motion are

perpendicular to the normal to the plane, and the focus is the point whose direction

of motion is perpendicular to the plane.

What do these equations become when the central axis is the axis of 2?

Ex. 7. The locus of the characteristics of planes which pass through a given

straight line is a hyperboloid of one sheet ; the shortest distance between the given

straight line and the central axis being the direction of one principal diameter,

and the other two being the internal and external bisectors of the angle between

the given straight line and the central axis. Prove also that the locus of the foci

of the planes is the conjugate of the given straight Une.

Ex. 3. Let any surface A be fixed in a body and move with it, the normal

planes to the trajectories of all its points envelope a second surface B. Prove that

if the surface B be fixed in the body and move with it, the normal planes to the

trajectories of its points will envelope the surface A : so that the surfaces A and B
have conjugate properties, each surface being the locus of the foci of the tangent

planes to the other. Prove that if one surface is a quadric the other is also a

quadric.

Euler's Equations.

248. To determine the general equations of motion of a body i

ahaut a fixed point.

Let the fixed point be taken as origin, and let x, y, z be the

co-ordinates at time t of any particle m referred to any rectangulal

axes fixed in space. Let Xm, Ym, Zm be the impressed force

acting on this element parallel to the axes of co-ordinates, anc

let Ly M, N be the moments of all these forces about the axes.

d^x
Then by D'Alembert's Principle, if the effective forces w -r^

m -1^ , m -j^ he applied to every particle m in a reversed direc

tion, there will be equilibrium between these forces and the im^
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pressed forces. Taking moments therefore about the axes, we have

^™("<5'-2'5FJ=^- (1)-

and two similar equations.

To simplify these equations, let (o^,, cOy, w^ be the angular velo-

cities about the axes. Then -j~ = w^z — m^, ~ = «/; — m^,

dz

d^x dcoy dco^
. / N / N

" df^^~dt~^~df'' ^^"^~ '"^^'^ ~ '"^ ^'"^ ~ ®^^'

d^y dm, dco^
,

,
,

. .

Substituting in equation (1) we get

dw^
, .e

.
—^— + z.mxz . 6). &)_%m (a? 4- it) -^ — 'tmyz . —j-^ — 'tmxz .—^ + ^mxz . &)„&),

^ ^ ' dt ^ dt dt " '

- %mxy . (ft)/ - ft)/) + 2w (a^ - y"") w/o^ - tmyz . co^a^

The other two equations may be treated in the same manner.

The coefficients in this equation are the moments and products
of inertia of the body with regard to axes fixed in space and are

therefore variable as the body moves about. Let us then take a
second set of rectangular axes OA, OB, OC fixed in the body, and
let ft)j, ft)g, Wg be the angular velocities about these axes. Since

the axes Ox, Oy, Oz are perfectly arbitrary, let them be so chosen

that the axes OA, OB, OG are passing through them at the

moment under consideration. Thenft)^ = ft)j, a)y = (o^, w^ = w^. If

the principal axes at the fixed point have been chosen as the set

of axes fixed in the body, and A, B, C be the moments of inertia

about them, the equation takes the form

C^-(A-B)a>,co, = N,

in which all the coefficients are constants.

249. The axes of reference OA, OB, OC move in space.

We suppose the motion determined by the three angular velocities

ft)j, ft)2, 6)3 in the same manner as if the axes were fixed for an

instant in space. The position of the body at the time t + dt

may be constructed from that at the time t by turning the body

through the angles w^dt, co^dt, a^dt successively round the in-

stantaneous positions of the axes.

14—2
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If then the fixed set of axes Ox, Oy, Oz coincide at any

moment with a moving set OA, OB, OC we have (o^ = co^, a>y=(o^,

(o^ = (Og but it does not follow that their differential coefficients

should be also equal. At the time t + dt the axis 00, for instance,

will have separated from Oz by a small angle which we may
call d0, so that the component m^ + dm^ about Oz may differ from

the component tWg + doa^ about 00 by quantities of the same order

as dd.

We shall now show that if the moving axes he fixed in the body,

then dco^ = do)^ as far as the first order of small quantities. Let

OR, OB' be the resultant axes of rotation of the body at the times

t and t + dt, i.e. let a rotation D.dt about OR bring the body into

the position in which OG coincides with Oz at the time t ; and let

a further rotation D,'dt about OR' bring the body into some ad-

jacent position at the time t + dt while in the same interval dt, 00
moves into the position OC. Then according to the definition of

a differential coefficient

dco^ ,. ., n' cos E'a' - n cos ^c
w=^^^* dt

dco^ , . . , ft' cos R'z — XI cos Rz^ ='""*
di

The angles RC and Rz are equal by hypothesis. Since OCis
fixed in the body, it makes a constant angle with OR as the body
turns round OR', hence the angles R'C and R'z are also equal.

Hence these differential coefficients are also equal.

250. The following demonstration of this equality has been
given by the late Professor Slesser of Queen's College, Belfast, and
is instructive as founded on a different principle. Let A, B, C be
the points in which the principal axes cut a sphere whose centre
is at the fixed point. Let OL be any other axis, and let Q, be
the angular velocity about it. Let the angles LOA, LOB, LOO
be called respectively a, /3, 7. Then by Art. 233

fl = Wj cos a + Wj, cos yS + tOg cos 7

;

dD, dm.
.
dai„ „ d(o„

''-^ = -dt'''''^W'^+:df''''^
da adfi . dy-^.sma^-^.sm/S^-^gSm^^'^.

Now let the line OL be fixed in space and coincide with OC
at the moment under consideration. Then a — -

, y8 = -, 7 = 0;
.. f da d(o. dcL dl3 ^ ^

'

therefore -^ = -^ — a>,-^— m —
dt dt 'dt ^ dt

I
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1 a +.n o Qn f

dt

da
Also

-J-
is the angular rate at which A separates from a

dB
fixed point at G, this is clearly w^. Similarly -^ = _ 0,^. Hence

dSl _dw^
Thus— =^ ^3/^^2 <^fa)^ _ d(o^

dt dt
'

dt dt ' dt dt ' dt
~

dt
'

251. Euler's dynamical equations. The three equations
of motion of the body referred to the principal axes at the fixed

point are therefore

These are called Euler's equations.

252. We know by D'Alembert's principle that the moment
of the effective forces about any straight line is equal to that of

the impressed forces. The equations of Euler therefore indicate

that the moments of the effective forces about the principal axes

at the fixed point are expressed by the left-hand sides of the above
equations. If there is no point of the body which is fixed in

space, the motion of the body about its centre of gravity is the

same as if that point were fixed. In this case, if A, B, G be the

principal moments at the centre of gravity, the left-hand sides of

Euler's equations give the moments of the effective forces about

the principal axes at the centre of gravity. If we want the

moment about any other straight line passing through the fixed

point, we may find it by simply resolving these moments by the

rules of Statics.

253. Ex. 1. If 2T=Au^ + Bw^+Go}^ and G be the moment of the impressed

forces about the instantaneous axis, i2 the resultant angular velocity, prove that

Ex. 2. A body turning about a fixed point is acted on by forces which tend to

produce rotation about an axis at right angles to the instantaneous axis, show that

the angular velocity cannot be uniform unless two of the principal moments at the

fixed point are equal. The axis about which the forces tend to produce rotation is

that axis about which it would begin to turn if the body were placed at rest.

254. To determine the pressure on the fixed point.

Let X, y, z be the co-ordinates of the centre of gravity referred

to rectangular axes fixed in space meeting at the fixed point, and
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let P, Q, B be the resolved parts of the pressures on the body in

these directions. Let /x be the mass of the body. Then we have

and two similar equations. Substituting for -^ its value in terms

(o^,Qi^, w,we have

d(o,. dm
fil^-g-y-^i'^ «,(«x2/ - o>rP) - ".(®^ - G>^)|- = P + tmX

and two similar equations.

If we now take the axes fixed in space to coincide with the

principal axes at the fixed point at the moment under considera-

tion we may substitute for -^ and -— from Euler's equations.

We then have

f. |a,,(5+C'-^)(»+^«)-(<+<).;|=P+2mZ-/.(§.-fy)

,

with similar expressions for Q and R.

255. Ex. If G be the centre of gravity of the body, show that the terms on

the left-hand sides of the equations which give the pressures on the fixed point are

the components of two forces, one Q^ . GH parallel to GH which is a perpendicular

on the instantaneous axis 01, being the resultant angular velocity, and the other

J2'2 . GK perpendicular to the plane OGK, where GK is a perpendicular on a straight

B — G C — A
line OJ whose direction-cosines are proportional to —^— "a^s* —e— WjWii

A — B
Wj^Wj , and 0'* is the sum of the squares of these quantities.

256. Euler's geometrical equations. To determine the

geometrical equations connecting the motion of the body in space

with the angular velocities of the body about the three moving axes,

OA, OB, 00.

Let the fixed point be taken as the centre of a sphere of

radius unity; let X, Y, Z and A, B, Cbe the points in which the
sphere is cut by the fixed and moving axes respectively. Let ZG,
BA produced if necessary, meet in E. Let the angle XZC = y{ry

ZG = 9, EGA = ^. It is required to determine the geometrical
relations between 6, <p, yfr, and to^, a^, w^.

Draw CN perpendicular to OZ. Then since yjr is the angle
the plane 00^^ makes with a plane XO^ fixed in space, the velo-

city of G perpendicular to the plane ZOCis OiV -f , which is the

dyfr
^^

same as sin O-rr, the radius OG of the sphere being unity. Also
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do
the velocity of C along ZO is -j- . Thus the motion of C is re-

presented by
-J-

and sin -^ respectively along and perpendi-

cular to ZG. But the motion of G is also expressed by the angular

velocities eo^ and co^ respectively along BG and GA. These two
representations of the same motion must therefore be equivalent.

Hence resolving along and perpendicular to ZG we have

-J- = co^sm (p + Q)^ cos 9

sin ^ -^ = — w^ cos ^ + Wj ^^^ ^

Similarly by resolving along GB and GA we have

-—- sin 6 cos 6
at

co,, =^ cos <j) + ^ sine sin cf>

dd . ^

de

dt dt

These two sets of equations are precisely equivalent to each

other and one may be deduced from the other by an algebraic trans-

formation.

In the same way by drawing a perpendicular from E on OZ we

may show that the velocity of E perpendicular to ZE is -^ sin ZE,

and this is the same as -^ cos 6. Also the velocity of A relative

d6
to E along EA is in the same way -^ sin GA, and this is the
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same as~ . Hence the whole velocity of A in space along AB

is represented by -^ cos6 + -~
. But this motion is also ex-

pressed by 0)3. As before these two representations of the same

motion must be equivalent. Hence we have

If in a similar manner we had expressed the motion of any
other point of the body as B, both in terms of w,, m^, Wg and
6, cf>, yjr, we should have obtained other equations. But as we can-

not have more than three independent relations, we should only

arrive at equations which are algebraic transformations of those

already obtained.

257. It is sometimes necessary to express the angular velocities of the body

about the fixed axes OX, OY, OZ in terms of 0, <p, \p. This may be effected in the

following manner. Let u^ Wy, w^ be the angular velocities about the fixed axes,

S2 the resultant angular velocity. If we impress on space and also on the body in

addition to its existing motion, an angular velocity equal to - about the resultant

axis of rotation, the axes OA, OB, OG will become fixed, and the axes OX, OY, OZ
will move with angular velocities - w„ - Wy, - u^ Hence, in the formulae of the

text, if we change (p into -^,6 into ~ 0, ^ into - ip, w^, u^, Wj will become - u^,

— Uy, — Wg, and we have

do . dip .

Wj.= — — sm^+ -^sinff cos^,

do . di> . „ . ,

b3y= -^ 00s \f/+-^ eanO smiff,

Sometimes it will be more convenient to measure the angular co-ordinates

0, ^, \i' in a different manner. Suppose, for example, we wish to refer the axes

fixed in space to the axes fixed in the body as co-ordinate axes. To obtain the

standard figure corresponding to this case, we must in the figure of Art. 256 inter-

change the letters X, Y, Z with A, B, C, each with each. The angles 0, <p, \j/ being

measured as indicated in the figure after this change, the relations connecting them
with the angular velocities about the axes fixed in space, are obtained from those

in Art. 256 by simply changing w^, Wj, Wg into - w^., - Wy, - w^. If we choose to

measure in the opposite direction to that indicated in the figure, the expressions

for Wx, Uy, become identical with those for w^, Wj, in Art. 256.

258. Ex. 1. If p, g, / be the direction cosines of OZ with regard to the axes
OA, OB, OG, show that these equations may be put into the symmetrical form

^P , n da ^ dr

Any one of these may be obtained by differentiating one of the expressions'

p=-mx0 co3<f), q = sinO sin^, r=cos^. The others may be inferred by the rule

of symmetry.
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Ex. 2. Prove that the direction cosines of either set of Euler's axes with regard

to the other are given by the formulae

cosXA= -siaxj/ sin 9 + cos i^ coS(^ cos^^

cos YA = cos ^ sin
<f> + sin \p cos (p cos d\

cosZA = — sin ^ cos 4>

cobXB= - sin ^ cos - cos ^ sin cos 6\

cos YB= cos \p cos - sin ^ sin cos d)

cosZB= sind sin^

cosZC= sin5cos^\

cos rC= sin ^ sin iZ-v

.

cosZC= cos^ )

To prove the first three, produce ZF to cut AB in M, then the angle XMA = $,

MY=\I/, irz=90 + ^, iH^= 9O-0. To deduce the second set from the first, write

0+i7r for <p.

These results are given here for reference as they are useful in the higher

problems of dynamics.

259. It is clear that instead of referring the motion of the body
to the principal axes at the fixed point, as Euler has done, we
may use any axes fixed in the body. But these are in general so

complicated as to be nearly useless. When, however, a body is

making small oscillations about a fixed point, so that some three

rectangular axes fixed in the body never deviate far from three

axes fixed in space, it is often convenient to refer the motion to

these even though they are not principal axes. In this case

eOj, 0)2 , 0)3 are all small quantities, and we may neglect their

products and squares. The general equation of Art. 248 reduces in

this case to

^_ ^_ rfWj^
.

dt dt dt '

where the coefficients have the usual meanings given to them in

Chap. I. We have thus three linear equations which may be
written thus

:

dt dt dt

dt ^ dt dt '

dt dt dt

260. Tlie centrifugal forces. It appears from Euler's Equations that the

whole changes of Wj, w^, Wj are not due merely to the direct action of the forces,

but are in part due to the centrifugal forces of the particles tending to carry them

away from the axis about which they are revolving. For consider the equation

dw, N A-B
7; +

"3

.

dt G ' C
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N
Of the increase dw^ in the time dt, the part -^ dt is due to the direct action of

the forces whose moment is N, and the part
A-B
C

WiWgdt is due to the centrifugal

forces. This may be proved as follows.

If a body be rotating about an axis 01 with an angular velocity u, then the

moment of the centrifugal forces of the whole body about the axis Oz is (A-B) WjWj.

Let P be the position of any particle m, and let x, y, z be its co-ordinates. Then

x=OR, y=RQ, z=QP. Let PS be a perpendicular on 01, let OS=u, and PS=r.

Then the centrifugal force of the particle m is uPrm tending from 01.

The force u*rm is evidently equivalent to the four forces (Aem, uhftn, bPzm, and
- urhim acting at P parallel to x, y, z, and w respectively.

The moment of or'xm round Oz=~ (.^xym)

(irhfm = u^xym V;

«*xm =0 )

these three therefore produce no effect.

The force - uPum parallel to 01 is equivalent to the three, - tau^um, - ww^um,
- wa^um, acting at P parallel to the axes, and their moment round Oz is evidently

brum {ojy - u^). Now the direction cosines of 01 being ^ !^^ -vre get by
a u (i)

projecting the broken line x, y, z on 01, u='^ x+'^y+'^z; therefore substituting
u u u

for u, the moment of centrifugal forces about Oz is

= {wjy - b}^) [w^x + (o^y + bi^z) rn,

= (b>ih:y + WjWg?/*

+

u^u^z - u^w^^ - u^xy - WjWjaa) m.

Writing S before each term, and supposing the axes of x, y, z to be principal

axes, then the inoment of the centrifugal forces about the principal axis Oz

= WiWjSm (2/2 - «2) ^ (^^„^ (^ _ p)^

Let the moments of the centrifugal forces about the principal axes of the body

be represented by U, W, N', so that
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and let G be their resultant couple. The couple G is usually called the centrifugal

couple.

Since L'(,}^ + M'o}e^ + N'b}^=0, it follows that the axis of the centrifugal couple is

at right angles to the instantaneous axis.

Describe the momental ellipsoid at the fixed point and let the instantaneous

axis cut its surface in I. Let OH be a perpendicular from on the tangent plane

at /, The direction cosines of OH are proportional to Awi, Bu^, Owg. Since

Au}iL'+B(a2M'+ Cu3N'=0, it follows that the axis of the centrifugal couple is at

right angles to the perpendicular OH.

The plane of the centrifugal couple is therefore the plane lOH.

If {ik^ be the moment of inertia of the body about the instantaneous axis of

rotation, we have ^ = ^-^2 , and T=/j.iPw^ is the Vis Viva of the body. We may

then easily show that the magnitude G of the centrifugal couple is G = T tan^,

where ^ is the angle lOH.

This couple will generate an angular velocity of known magnitude about the

diametral line of its plane. By compounding this with the existing angular

velocity, the change in the position of the instantaneous axis might be found.

Expressions for Angular Momentum.

261. We may now investigate convenient formulae for the

angular momentum of a body about any axis. The importance
of these has been already pointed out in Art. 77. In fact, the

general equations of motion of a rigid body as given in Art. 71,

cannot be completely expressed until these formulae have been
found.

When the body is moving in space of two dimensions about
either a fixed point, or its centre of gravity regarded as a fixed

point, the angular momentum about that point has been proved in

Art. 88 to be MJ<^a) where Mk^ is the moment of inertia, and co

the angular velocity about that point. Our object is to find cor-

responding formulae when the body is moving in space of three

dimensions. We shall show first how to find the angular mo-
mentum about a straight line which is such that one axis of

reference (say, the axis of z) can be chosen parallel to it. We
shall then find an expression for the angular momentum when the

straight line is inclined to all three axes of reference. The former

result has of course the advantage of simplicity and is therefore

more generally useful.

262. Angular Momentum about the axis of z. The

instantaneous motion of a body about a fixed point is given by the

angular velocities (o^, Wy, co^ about three axes which meet at the

point, find the angular momentum about the axis of z.

Let X, y, z be the co-ordinates of any particle m of the body, and

u\ v', w' the resolved velocities of that particle parallel to the
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axes. Then by Art. 77 the moment of the momentum about the

axis of z is

\ = 2m [xv — yu).

Substituting u = ca^ — m^, v = a>jjc — co^ from Art. 238, we
have

h^ = 2m {x^ + if) Q), — i^mxz) ay^ — (Xmyz) ©j,.

Similarly the angular momenta about the axes of x and y are

h^ = 2m (y^ + z^) (o^ — (tmxy) o>y— (Xmxz) o>,

Aj = 2m {/ + 0^) cOy— (Emyz) w, — (^myx) co^

Here the coefficients of co^, co^, m, are the moments and products

of inertia about the axes which meet at the fixed point.

263. -5^ there be no fixed point in the body we must use all

the six components of motion. The form of the result depends
on the point which is chosen as the base. The form is much
simplified by choosing the centre of gravity as the base point,

and for the reasons given in Arts. 75, 76 this is generally the

most convenient point.

Let Oz be the axis about which the angular momentum is

required, and let Ox, Oy be two other axes, thus forming a set

of rectangular axes. Let x, y, z be the co-ordinates of the centre

of gravity. Let the instantaneous motion of the body be con-

structed (as in Art. 238) by the linear velocities u, v, w of the

centre of gravity parallel to the axes of reference and the angular

velocities (o^, co^, w, round three parallel axes meeting at the

centre of gravity.

By Art. 76 the angular momentum about Oz is equal to

that about a parallel axis through the centre of gravity regarded
as a fixed point together with the angular momentum of the

whole mass collected at the centre of gravity. The former of these

has been found in the last Article and the latter is obviously

M {xv — yu) . The required angular momentum is therefore

M {xv — yu) + 2m {x^ + y^ o), — (l,mxz) to^ - (Emyz) <u^.

Here M is the whole mass of the body, and the coefficients of

eoj,, cOj,, (o^ are the moments and products of inertia about axes

which meet at the centre of gravity.

264. Moving axes. When the axes of reference are moving
in space, the motion of the body during any time dt is constructed

by using the components of motion as if the axes were fixed

for the moment in space. See Art. 249. In the expressions just

given for the angular momentum the axes, regarded as fixed in

space, may be any whatever. Let them be chosen so that any
set of moving axes coincides with them at the time t. Then these

k
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formulae will express the angular momentum about the moving
axis of z at that particular moment, whether the axis of z

continues to occupy the same position in space or not. The
formulae are therefore quite general and give the instantaneous

angular momentum whether the axis be fixed or not.

If the axes chosen be fixed in space the coefficients of (o^, w^,

ft), in the expression for h^ will generally be variable and their

changes may be governed by complicated laws. In such a case it

is more convenient to choose axes fixed in the body, and this

is the choice made by Euler in his equations of motion, Art. 251.

Suppose a body to be moving about a fixed point 0, and
let its instantaneous motion be given by the angular velocities

(Uj, (o^, o)g about axes Ox , Oy', Oz fixed in the body. Then the

angular momentum about the axis of / is

where G, E and D are absolute constants, viz.

C=t'm{x^ + y'^), E=tmx'z, D = ^my'z'.

If the axes fixed in the body be principal axes, then the

products of inertia vanish. These expressions for the moments of

the momentum will then take the simple form

K = ^^1' ^2' = S«2' K = ^^3'

where A, B, C are the principal moments of the body at the

origin supposed to be fixed in space.

265. It is sometimes convenient to have two sets of axes

(as in Art. 256), one moving and the other fixed in space but
having a common origin. Let the moving axes be Ox, Oy, Oz

,

and the fixed axes Ox, Oy, Oz. Let the direction cosines of either

with regard to the other be given by the diagram
;

where for example 63 is the cosine of the angle
,
x y z

between the axes of z and y (see Art. 217). Let ~T
the momenta of all the particles of the body '

^'^ ^1 ^^ ^3

be equivalent to the three "couples" A/, /i/, h^ 2/ ^i ^2 ^3

about the axes Ox, Oy, Oz. Then the moment z' c, c^ Cg

of the momentum about the axis Oz may be

written in the form

In the same way we have

These forms will be often useful.

266. Angular momentum about any axis. TTie motion

of a body is given by the linear velocities (u, v, w) of the centre
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of gravity and the angular velocities {w^, Wy, m^, prove that the

angular momentum about the straight line , —
X — f _y — s z —

h

is equal to

Ihj + m\ + nhg + M 1 m n

u V w
f S h

where M is the mass of the body, \, \, \ have the values given

in Art. 262, and (1, m, n) are the actual direction cosines of the given

straight line.

This may be done by the use of the principle proved in Art. 76.

The angular momentum about a parallel to the given axis is

clearly Ih^ + mh^ + nh^. We must now find the angular mo-
mentum of the whole mass collected at the centre of gravity round

the given straight line and add these two results together.

Referring to the figure in Art. 238, let P be the point {fgh).

Let us find the angular momentum about a set of axes parallel

to given co-ordinate axes with P for origin. It is clear that

NP produced will be the new axis of z. The moment of the

velocity of the origin about NP is seen to be w . MN — v . OM,
w^hich is the same as ug — vf; this tends in the positive direction

round NP. Similarly the moments of the velocities of about

the parallels to a; and y will be vh - wg and wf— uh. If we
multiply these three by {n, I, m) respectively, we have the moment
of the velocity of the centre of gravity about the straight line.

Multiplying this by M we have the angular momentum of the

centre of gravity. The required result follows at once.

267. To find the angular momentum of a body about the

instantaneous axis and also about any perpendicular axis which in-

tersects the instantaneous axis.

Taking the instantaneous axis for the axis of z, we may use the

expressions for h^, h^, h^ given in Art. 262.

In our case a^ = 0, a)y= 0, and a)^=D,, where O is the resultant

angular velocity of the body. The angular momenta about the

axes of X, y, z are therefore respectively

^j = — (Sma;^) H, h^= — {%myz) H, h^ = Xm {x^ + y^) ft.

It appears therefore that the angular momentum about any
straight line Ox perpendicular to the instantaneous axis Oz is

not zero unless the product of inertia about those two axes is:

zero.

To understand this properly we must remember that the
angular velocities oa^, to^, «, are used merely to construct the

motion of the body during the time dt. Referring to the figure of
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Art. 238, let Oz be the instantaneous axis, then the particle of the
body at P is moving perpendicular to the plane PLO, and therefore
the direction of its velocity is not parallel to Ox and does not
intersect Ox. The velocity of this particle has therefore a moment
about Ox, although Ox is perpendicular to the instantaneous
axis. Let 6 be the angle PMN, r = PM, then

2 dO dz dv „

JQ
so that the angular velocity -^ of the particle P about Ox vanishes

when ©a; = and Wj, = only when the particle lies in either of the
planes xy or yz.

268. Examples. A triangular area ACB -whose mass is JI is turning round

the side GA with an angular velocity w. Show that the angular momentum about

the side GB is -^Mab sin^ Cw, where a and b are the sides containing the angle G.

Ex. 2. Two rods OA, AB, are hinged together at A and suspended from a fixed

point 0. The system turns with angular velocity w about a vertical straight line

through so that the two rods are in a vertical plane. If 0, be the inclinations

of the rods to the vertical, a, b their lengths, M, M' their masses, show that the

angular momentum about the vertical axis is

w[{\M+M')aP' e,ivi?d + M'ab smd sm<t>+\M'b^ sin^^].

- Ex. 3. A right cone, whose vertex is fixed, has an angular velocity w com-

municated to it about its axis OC, while at the same time its axis is set moving

in space. The semi-angle of the cone is \ir and its altitude is h. If 9 be the

inclination of the axis to a fixed straight line Oz and \j/ the angle the plane zOG
makes with a fixed plane through Oz, prove that the angular momentum about

Oz is f1/A^ ( sin^^ -^ -t- |w cos ) , where M is the mass of the cone.

Ex. 4. A rod AB is suspended by a string from a fixed point and is moving

in any manner. If {I, m, n) (p, q, r) be the direction cosines of the string and rod

referred to any rectangular axes Ox, Oy, Oz, show that the angular momentum
about the axis of z is

^^i^/,dm dl\ ^^d?( do dp\ ,,a&/ dm dp .dq dl\

''^V-di-''di)+''3{pi-^i)-'''Y[Pdt-"'Tt^'Tt-^dt)'

where M is the mass of the rod, and a, b the lengths of the rod and string.

ON FINITE ROTATIONS.

269. When the rotations to be compounded are finite in magnitude, the rule

to find the resultant is somewhat complicated. As already mentioned in Art. 229

such rotations are not very important in Rigid Dynamics. We shall therefore

only briefly mention a few propositions which may throw Ught on those already

discussed when the motion is infinitely small. We begin with the proposition

corresponding to the parallelogram of angular velocities.
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270. Bodrigues' Theorem. A body has two rotations, (1) a rotation about an

axis OA through an angle ; (2) a subsequent rotation about an axis OB through

an angle 6', and both these axes are fixed in space. It is required to compound these.

Let lengtlis measured along OA, OB represent these rotations in the manner

explained in Art. 231.

Let the directions of the axes OA, OB cut a sphere whose centre is at in

A and B. On this sphere measure the angle BAG equal to ^ in a direction opposite

to the rotation round OA and also the angle ABC equal to -^ in the same direction

as the rotation roimd OB, and let the arcs intersect in C. Lastly, measure the

angles BAG', ABG' respectively equal to BAG, ABG, but on the other side of AB.

The rotation 6 round OA will then carry any point P in OC into the straight

line OG', and the subsequent rotation 6' about OB will carry the point P back into

OC. Thus the points in OG are unmoved by the double rotation and OC is there-

fore the axis of the single rotation by which the given displacement of the body

may be constructed. The straight line OC is called the resultant axis of rotation.

If the order of the rotations were reversed, so that the body is rotated first about

OB and then about OA, the resultant axis would be OC
If the axes OA, OB were fixed in the body, the rotation about OA would bring

OB into a position OB'. Then the body may be brought from its first into its

last position by rotations 0, 0' about the axes OA, OB' fixed in space. Hence the

same construction will again give the position of the resultant axis and the rotation

about it.

To find the magnitude 0" of the rotation about the resultant axis 00 we notic

that if a point P be taken in OA, it is unmoved by the rotation about OA, and

the subsequent rotation 0' about OB will bring it into the position P', where PI

is bisected at right angles by the plane OBG. But the rotation 0" about OG mua
give P the same displacement, hence in the standard case 0" is twice the externa

angle between the planes OCA, OCB. If the order of the rotations be reversed

the rotation about the resultant axis OG' would be twice the external angle at Cf\

which is the same as that at G. So that though the position of the resultant aj

of rotation depends on the order of rotation th« resultant angle of rotation

independent of that order.

271. A rotation represented by twice any internal angle of the spheric

triangle ABG is equal and opposite to that represented by twice the correspondii

external angle. For since the sum of the internal and external angles is w, the

two rotations only differ by 27r ; and it is evident that a rotation through an angi

1
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2t cannot alter the position of any point of the body. This is merely another way
of saying that when a body turns about a fixed axis it may be brought from one
given position to another by turning the body either way round the axis.

272. The rule for compounding finite rotations may be stated thus:

If ABC he a spherical triangle, a rotation round OA from C fo B through twice

the internal angle at A, followed by a rotation round OB from A to C through twice

the internal angle at B, is equal and opposite to a rotation round OC from B to A.

through twice the internal angle at C.

It will be noticed that the order in which the axes are to be taken as we travel

round the triangle is opposite to that of the rotations.

As the demonstrations in Art. 270 are only modifications of those of Eodrigues,

we may call this theorem after his name.

273. Ex. 1. If two rotations 6, & about two axes OA, OB at right angles bo

compounded into a single rotation about an axis OC, then

tan C0^ = tan- cosec 2 , tan (705= tan ^ cosec - , and cos^= cos- cos -^ .

274. Sylvester's Theorem. From Eodrigues' theorem we may deduce Sylves-

ter's theorem by drawing the polar triangle A'B'C Since a side B'C is the

supplement of the angle A, a rotation represented in direction and magnitude by

2B'C' differs from that represented by 2A in the opposite direction by a rotation

through an angle 2ir. But a rotation through 2ir cannot alter the position of the

body, hence the two rotations 2B'C' and 2A are equivalent in magnitude but opposite

in direction. If therefore A'B'C he any spherical triangle, a rotation represented by

twice B'C followed by a rotation twice G'Af produces the same displacement of the

body as a rotation twice B'A'. By a rotation B'C is meant a rotation about an axis

perpendicular to the plane of B'C which will bring the point B' to C.

275. The following proof of the preceding theorem was given by Prof. Donkin

in the Phil. Mag. for 1851. Let ABC be any triangle on a sphere fixed in space,

a/37 a triangle on an equal and concentric sphere moveable about its centre. The

sides and angles of ajSy are equal to those of ABC, but differently arranged, one

triangle being the inverse or reflection of the other. If the triangle ajSy be placed

in the position I, so that the sides containing the angle a may be in the same great

circles with those containing A, it is obvious that it may slide along AB into the

position n, and then along BC into the position HI ; into which last position it
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might also be brought by sliding along AC. To slide a^y along AB is equivalent to

moving j3 and o each through an arc twice the arc AB about an axis perpendicular

to the plane ot AB. A similar remark applies when the triangle slides along BC
or AC. Hence, twice the rotation AB followed by twice the rotation BC produces

the same displacement as twice the rotation AC.

276. Botation Couples. If it be required to compound the rotations about

two parallel axes, the construction of Eodrigues requires only a slight modification.

Instead of arcs drawn on a sphere, let planes be drawn through the axes making

with the plane containing the axes the same angles as before ; their intersection

will be the resultant axis. One case deserves notice. 11 6 = - 6', the resultant

axis is at infinity. A rotation about an axis at infinity is evidently equivalent to

a translation. Hence a rotation 6 about any axis OA followed by an equal and

opposite rotation about a parallel axis O'B distant a from OA is equivalent to

6 6
a translation 2a sin ^ perpendicular to a plane through OA making an angle - with

the plane containing the axes and in the direction of the chord of the arc described

by any point in OA. These results also follow easUy from Art. 223.

277. Conjugate Botations. Any given displacement of a body may he repre-

tented hy two finite rotations, one about any given straight line and the other about

some other straight line which does not necessarily intersect the first. When a dis-

placement is thus represented, the axes are called conjugate axes and the rotations

are called conjugate rotations.

Let OA be the given straight line, and let the given displacement be represented

by a rotation 4> about a straight line OR and a translation OT. We wish to resolve

this rotation about OR into two rotations, one about OA to be followed by a rotation

about OB, where OB is some straight line perpendicular to OT. To do this we
follow the rule in Art. 270, we describe a sphere whose centre is and radius

unity and let it intersect OA, OR, OT in A, R and T. Make the angle ARB equal

to the supplement of ^, and produce RB to B so that rJB=^, and join AB. By

the triangle of rotations the rotation ^ is now represented by a rotation about OA
which we may call 6, followed by a rotation about OB which we may call 0'.

By Art. 276 the rotation 6' is equivalent to an equal rotation ff about a parallel

axis CD, together with a translation, which may be made to destroy the translation

or. This will be the case if the angle OT makes with the plane of OB, CD be

ir-ff—-— on the one side or the other of OT according to the direction of the rotation,

and if the distance r between OB, CD be such that 2r sin -= 0r.

The whole displacement has thus been reduced to a rotation d about OA followed

by a rotation 6' about CD.

278. Composition of Screws. Any two successive displacements of a body

may be represented by tico successive screw motions. It is required to compound

these.

Let the body be screwed first along the axis OA with linear displacement a and

angle of rotation 6, and secondly along the axis CD with displacement a' and angle

ff. Let OC be the shortest distance between OA and CD, and for the sake of the

perspective let it be called the axis of y. Let be the origin and let the axis of x
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be paraUel to CD, so that OA Ues in the plane of xz. Let OC=r, and the angle

AOx=a. Draw a plane xOT making with the plane of xz an angle -^ , and let it

cut yz in OT. Draw another plane AOR making with xz an angle ^ , and cutting

the plane xOT in OR.

Produce ^0 to a point P, not marked in the figure, so that PO= a, and let

us choose P as a base point to which the whole displacement of the body may
be referred. The rotation d' is equivalent to a rotation 6' about Ox together with

a translation along 0T=2r sin- by Art. 223. By Art. 270 the rotation about OA

followed by 0' about Ox is equivalent to a rotation Q about OR where Q is twice the

angle ART, so that sin -5= sin- . . ^^ . The whole displacement is now repre-

sented by (1) a translation of the base point P to 0, (2) the rotation 0, (3) a further

ff

linear translation which is the resultant of the translations 2r sin -^ along OT and
a

a' along Ox. By Art. 219 these displacements may be made in any order, being

all connected with the same base point. They may therefore be compounded into

a single screw by the rule given in Ait. 225. This is called the resultant screw.

A screw equal and opposite to the resultant screw will bring the body back to its

original position.

The angle of rotation of the resultant screw is and its axis is parallel to OR
by Art. 220. It follows by Art. 271 that the sine of half the angle of rotation of

each screw is proportional to the sine of the angle between the axes of the other

two screws.

To find the linear displacement along the axis of the resultant screw, we mast

by Art. 222 add together the projections on OR of the three displacements OT, a, a'.

Ql

The projection of OT = 2r sin ^ cosrE = 2r cos Tj/. cos TiJ, which is twice the

projection of the shortest distance r on the axis of rotation. If T be the linear

displacement, we have T=2r cosRy + a cosRA + a' cosRx.

279. If the component screws be simple rotations, we have o=0, o'=0, and it

15—2
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may be shown without diflSculty that T Bin-x=2r sin- sin- sin a. It has been

shown in Art. 277 that any displacement may be represented by two conjugate

rotations in an infinite number of ways, but it now follows that in all these

r sin- sin- sin a is the same. When the rotations are indefinitely small, and

equal to wdt, u'dt respectively, this becomes ^rww' (dt)^ sin a; that is, the product of

an angular velocity into the moment of its conjugate angular velocity about its axis

is the same for all conjugates representing the same motion.

Ex. 1. If the component screws be simple finite rotations, show that the

equations to the axis of the resultant screw are

gi
ff

gi
(f g/ gr Q

-X isiXKpi'+y sin-jr4-aco8-=r sin-jr
,
ycoi--zsm—=rBm.-^ cos0' cot-,

where 0' is the angle xOB and fi is the resultant rotation. The first equation

expresses the fact that the central axis lies in a plane which bisects at right angles

a straight line drawn from perpendicular to OR in the plane xOR to represent

the linear translation in that direction. The second expresses that the central axis

lies in a plane parallel to TOR at a distance from it determined by Art. 225.

These equations may also be deduced from those of Eodrigues given in Art. 281.

To effect this we must write for (a, b, c) the resolved parts of the translation along

or. Since however the positive direction of the rotation in Eodrigues' formulae

has been taken opposite to that chosen in the preceding article, we must write for

(I, m, n) the direction cosines of OR with their signs changed.

The equations to the central axis of any two screws may be found by either of

these methods.

Ex. 2. Let the motion be constructed by two finite rotations 0, ff taken in

order round axes OA, CD at right angles to each other, and let CO be the shortest

distance between the axes. Let the two straight lines OP, CP be drawn in the

plane BCO such that the angle POC = - and tanPCO= sin^ ^ cot - . Then if P

be moved backwards by the rotation or forwards by the rotation 6", in either case
its new position is a point on the central axis.

Ex. 3. If OA, OB be the axes of two screws at right angles, with linear dis-

placements a and b, the point P is the intersection of two parallels to the straight

lines described m the last example ; these parallels being drawn respectively at

distances ^tan^ and ^ f l + cot^' sin^-
j , where 0, </.' are the angles the

resultant axis of rotations makes with OA and CD. Then if P be screwed back-
wards by the first screw or forwards by the second, in either case its new position
is a point on the central axis.

280, The Velocity of any Point. The formulae corresponding to those given
in Art. 238 for infinitely small motions are rather more complicated.

A displacement of a body is given by a rotation through a finite angle about an
axis passing through the origin xohose direction cosines are (1, m, n). It is required
to find the changes produced in the co-ordinates (x, y, z) of any point P.

Let PP' be the chord of the arc described by P and let Q be the middle point
of PF. Let x+ 8x, y + by, z + Sz be the co-ordinates of P' and f, t), f those of Q.
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Since the abscissa of Q is the arithmetic mean of those of P and F we have

i=x + g- ;
similarly q = y + -~

, ^=z + ~ . Let QM be a perpendicular from Q

on the axis, then PP' = 2QM tan ~ .

Let (X, fi, v) be the direction cosines of PP', then since PF is perpendicular to
the axis, we have l\+mfi+ nv = 0, and since it is also perpendicular to OQ we have
^\+ijfji+ l}'=0, hence

X _ H _ V

mi;-n-n n^-l^~ Irj-m^'

The sum of the squares of the denominators is

which is 0Q2 _ OM^=QM^. Hence each of these ratios is =— .QM
Now dx is the projection of PP' on the axis of x,

.-. Sx=2QM.i&u-\=^2iz.n~{mi-n-n);

similarly Sy^2 tan - (ra^ -l^), $z = 2 tan ^(Iv- m^), which are the required formulse.

If the origin have a linear displacement whose resolved parts parallel to the

axes are [a, h, c), we must add those displacements to the values of 5x, 8y, 8z found
by solving these equations. Let the co-ordinates of the middle point of the whole

displacement ofP be represented by |', t}', f . Then we have, as before, |'=x+ ^f Ac,

but since dx, Sy, 5z, are increased by a, i, c we must write €' - 5 , if - at i"' - 5

for ^, >}, f. We thus obtain

a:c=a+2tan|jm(r-|)-»(V-|)|,

with similar expressions for dy and dz.

281. The equations to the central axis follow from these expressions without

difficulty. The whole displacement of any point in the central axis is along the

axis, so that (f', t)', f ') the co-ordinates of the middle point of the displacement are

co-ordinates of a point in the axis, and 5a;, dy, 5z are proportional to {I, m, n) the

direction-cosines of the axis. Hence

„.2t.ngf(r-|)-n(,'-|)} >.2.ang|.(f-;)-,(r-|)}

{ m

n

Each of these is evidently equal to la + mb + nc, which is the linear displacement

along the central axis. The results of this and the preceding Article are due to

Eodrigues.



CHAPTER VI.

ON MOMENTUM.

282. The term Momentum has been given as the heading of

this Chapter, though it only expresses a portion of its contents.

The object of the Chapter may be enunciated in the following

problem. The circumstances of the motion of a system at any time

Iq are given. At the time t^ the system is moving under other

circumstances. It is required to determine the relations which
may exist between these two motions. The manner in which
these changes are effected by the forces is not the subject of

enquiry. We only wish to determine what changes have been
effected in the time t^ — to. If the time <j — ^^ be very small, and
the forces very great, this becomes the general problem of im-
pulses. This also will be considered in the Chapter.

Let us refer the system to any fixed axes Ox, Oy, Oz. Then
the six general equations of motion may, by Art. 71, be written in

the form

tm{x^-y^) = tm{xY-yX)

Integrating these from i = ^^ to < = ^j, we have

[Sw -rr = ^m \ Zdt,

Let an accelerating force P act on a moving particle m during
any time t^—t^, and let this time be divided into intervals each
equal to dt. At the middle of each of these intervals let a line

be drawn from the position of m at that instant, to represent, at
the same instant, the value of mPdt both in direction and magni-
tude. Then the resultant of these forces, found by the rules of
Statics, may be called the whole force expended in the time t -t^.

Thus I mZdt is the whole force resolved parallel to the axis of Z.

These equations then show that

I



FUNDAMENTAL THEOREM. 231

(1) The change produced hy any forces in the resolved part of
the momentum of any system is equal in any time to the whole
resolved force in that direction.

(2) The change produced hy any forces in the moment of the
momentum of the system about any straight line is, in any time,

equal to the whole moment of theseforces about that straight line.

When the interval t^ — t^ is very small, the "whole force"
expended is the usual measure of an impulsive force, and the
preceding equations are identical with those given in Art. 86.

It is not necessary to deduce these two results from the equa-
tions of motion. The following general theorem, which is really

equivalent to the two theorems enunciated above, may be easily

obtained by an application of D'Alembert's principle.

283. Fundamental Theorem. If the momentum of any
particle of a system in motion be compounded and resolved, as if it

were a force acting at the instantaneous position of the particle,

according to the rules of Statics, then the momenta of all the par-
ticles at any time tj are together equivalent to the momenta at any
previous time t^ together with the whole forces which have acted

during the interval.

In the case in which no forces act on the system, except the

mutual actions of the particles, we see that the momenta of all

the particles of a system at any two times are equivalent ; a result

which has been already enunciated in Art. 72. The two princi-

ples of the Conservation of Linear Momentum and Conservation of

Areas may be enunciated as follows.

If the forces which act on a system be such that they have no

component along a certain fixed straight line, then the motion

is such that the linear momentum resolved along this line is

constant.

If the forces be such that they have no moment about a cer-

tain fixed straight line, then the moment of the momentum or

the area conserved about this straight line is constant.

It is evident that these principles are only particular cases of

the results proved in Art. 79.

284. Example of a central force. Suppose that a simple

particle m describes an orbit about a centre of force 0. Let v, v'

be its velocities at any two points P, P' of its course. Then my'

supposed to act along the tangent at P' if reversed would be in

equilibrium with mv acting along the tangent at P together with

the whole central force from P to P. If p, p be the lengths of

the perpendiculars from on the tangents at P, P', we have,

by taking moments about 0, vp = v'p, and hence vp is constant
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throughout the motion. Also if the tangents meet in T, the whole

central force expended must act along the line TO, and may be

found in terms of v, v by the rules for compounding velocities.

Ex. Two particles of masses m, m! move about the same centre of force. If

h, h' be the double areas described by each per unit of time, prove that mh+tn'h'

is unaltered by an impact between the particles.

285. Example of three particles. Suppose three particles

to start from rest attracting each other, but under the action of no

external forces. Then the momenta of the three particles at any

instant are together equivalent to the three initial momenta and

are therefore in equilibrium. Hence at any instant the tangents

to their paths must meet in some point 0, and if parallels to their

directions of motion be drawn so as to form a triangle, the mo-
menta of the several particles are proportional to the sides of that

triangle.

If there are n particles it may be shown in the same way that

the n forces represented by mv, m'v, &c. are in equilibrium, and if

parallels be drawn to the directions of motion and proportional to

the momenta of the particles beginning at any point, they will

form a closed polygon.

If F, F\ F" be the resultant attraction on the three particles,

the lines of action of F, F\ F" also meet in a point. For let

X, F, Z be the actions between the particles mm', ml'm, mm',
taken in order. Then F is the resultant of — F and Z; F' oi —Z
and X; F" of -Z and F. Hence the three forces F, F', F"
are in equilibrium* and therefore their lines of action must meet
in a point 0\ Also the magnitude of each is proportional to the

sine of the angle between the directions of the other two. This

point is not generally fixed, and does not coincide with 0.

If the law of attraction be proportional to the distance, the

two points 0, 0' coincide with the centre of gravity 0, and are

fixed in space throughout the motion. For it is a known propo-

sition in Statics that with this law of attraction, the whole attrac-

tion of a system of particles on one of the particles is the same as

if the whole system were collected at its centre of gravity. Hence
0' coincides with 0. Also, since each particle starts from rest,

the initial velocity of the centre of gravity is zero, and therefore,

by Art. 79, (r is a fixed point. Again, since each particle starts

from rest and is urged towards a fixed point G, it will move in the

straight line joining its initial position with O. Hence coin-

cides with G. When the law of attraction is proportional to the

distance, it is proved in Dynamics of a Particle, that the time of

* This proof is merely an amplification of the following. The three foioeR

F, F', F", being the internal re-actions of a system of three bodies, are in equili-

brium by D'Alembert's Principle.
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reaching the centre of force from a position of rest is independent
of the distance of that position of rest. Hence all the particles of
the system will reach G at the same time, and meet there. If 2m
be the sum of the masses, measured by their attractions in the

1 27r
usual manner, this time is known to be -—= .

286. Example of Iiaplaee's Three Particles. Three particles whose masses

are m, m', m", mutually attracting each other, are so projected that the triangle

formed hy joining their positions at any instant remains always similar to its original

form. It is required to determine the conditions of projection.

The centre of gravity will be either at rest or will move uniformly in a straight

line. We may therefore consider the centre of gravity at rest and may afterwards

generalise the conditions of projection by impressing on each particle an additional

velocity parallel to the direction in which we wish the centre of gravity to move.

Let be the centre of gravity, P, P', P" the positions of the particles at any

time t. Then by the conditions of the question the lengths OP, OP', OP" are

always to be proportional, and their angular velocities about are to be equal.

Since the moment of the momenta of the system about is always the same,

we have
virH+ mV^n + m"r"hi

=

constant,

where r, /, r" are the distances OP, OP', OP", and n is their common angular

velocity. Since the ratios r : / : r" are constants, it follows from this equation

that mr^n is constant, i.e. OP traces out equal areas in equal times. Hence by

Newton, Section ii, the resultant force on P tends towards 0.

Let p, p', p" be the sides PP", P"P, PP' of the triangle formed by the particles,

and let the law of attraction be rr—n • Then since the resultant attraction of
(dist.)*

m', m" on m passes through 0,

^sinP'PO='^'siiiP"PO,

but since is the centre of gravity,

m'p" sinFP0=7n"p' sin P"PO.

Hence either the three particles are in one straight line or p"*+i=/!)'*+i. If

ft= -1 the law of attraction is "as the distance." If fc be not = -1, we have

p'=p", and the triangle must be equilateral.

Suppose the particles to be projected in directions making equal angles with

their distances from the centre of gravity with velocities proportional to those

distances, and suppose also the resultant attractions towards the centre of gravity

to be proportional to those distances, then in all the three cases the same con-

ditions will hold at the end of a time dt, and so on continually. The three

particles wiU therefore describe similar orbits about the centre of gravity in a

similar manner.

First, let us suppose that the three particles are to be in one straight line. To

fix our ideas, let m' lie between m and m", and between m and m'. Then since

the attraction on any particle must be proportional to the distance of that particle

from 0, the three attractions

m' m" m" m m in'

[PPf + (pPy' (FTr~(PPT' ~(PF')'~{FF')*'
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must be proportional to OP, OF, OP'. Since 2jnOP=0, these two equations

X . u X XV 1, , T X
P'P"

XI, X
OP m'+ m"{l+ z)

amount to but one on the whole. Let z=^^, so that -^= ^^.j,,'+ m" '

OP _ -m + m"z

PF ~ m+m' + m"

'

Then we have

which agrees with the result given by Laplace, by whom this problem was first

considered.

In the case in which the attraction follows the law of nature k=2 and the

equation becomes

m22 {(1 + z)3 - 1} - m' (1 + zf (1 - «3) _ m" {(1 + z)^ - z^)=0.

This is an equation of the fifth degree, and it has therefore always one real root.

The left side of the equation has opposite signs when z=0 and z= a>, and hence

this real root is positive. It is therefore always possible to project the three masses

BO that they shall remain in a straight line. Laplace remarks that if m be the son,

m! the earth, m" the moon, we have very nearly z=a/— =
f/v\-

^^ *^®^

originally the earth and moon had been placed in the same straight line with the

sun at distances from the sun proportional to 1 and 1 + —-r , and if their velocities

had been initially parallel and proportional to those distances, the moon would

have always been in opposition to the sun. The moon would have been too distant

to have been in a state of continual eclipse, and thus would have been full every

night. It has however been shown by Liouville, in the Additions d la Connaissance

des Temps, 1845, that such a motion would be unstable.

The paths of the particles will be similar ellipses having the centre of gravity

for a common focus.

Secondly. Let us suppose that the law of attraction is ' as the distance." In

this case the attraction on each particle is the same as if all the three particles

were collected at the centre of gravity. Each particle will describe an ellipse

having this point for centre in the same time. The necessary conditions of pro-

jection are that the velocities of projection should be proportional to the initial

distances from the centre of gravity, and the directions of projection should make
equal angles with those distances.

Thirdly. Let us suppose the particles to be at the angular points of an equi-

lateral triangle. The resultant force on the particle m is

-^ cosP'PO +^ cosP"PO.
P* P*

The condition that the forces on the particles should be proportional to their

distances from shows that the ratio of this force to the distance OP is the same
for all the particles. Since

m'p" cosFPO + m"p' cosP"PO = {m+ m' + m") OP,

it is clear that the condition is initially satisfied when p=p'=p". Hence, by the

same reasoning as before, if the particles be projected with equal velocities in

directions making equal angles with OP, OF, OP" respectively, they will always,

remain at the angular points of an equilateral triangle.
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A discussion on the stability of this motion will be given in a later part of this

work.

Ex. 1. Show that if the three particles attracted each other according to the

law of nature, the paths of the particles, when at the comers of an equilateral

triangle, are equal ellipses having for a common focus. Find the periodic time.

Ex. 2. If four particles be placed at the comers of a quadrilateral whose sides

taken in order are a, b, c, d and diagonals p, p', then the particles could not move
under their mutual attractions so as to remain always at the comers of a similar

quadrilateral unless

(pV - tM") (c"+ a") + (a"c'» - pV") (S"+ d") + (6"d» - a'^d^) (p» +p">) = 0,

where the law of attraction is the inverse (w- 1)"» power of the distance.

Show also that the mass at the intersection" of h, c divided by the mass at

intersection of c, d is equal to the product of the area formed by a, p', d divided by

the area formed by a, b, p and the difference -77; - -7- divided by .

p " a" p" 6"

These results may be conveniently arrived at by reducing one angular point as

A of the quadrilateral to rest. The resolved part of all the forces which act on each

particle perpendicular to the straight line joining it to A will then be zero. The
case of three particles may be treated in the same manner. The process is a little

shorter than that given in the text, but does not illustrate so well the subject of

the chapter.

287. When the system under consideration consists of rigid

bodies we must use the results of Art. 75 to find the resolved part

of the momentum in any direction. The moment of the momentum
about any straight line may also be found by Art. 76 in Chap. II.,

combined with Art. 134 in Chap, iv., if the motion be in two
dimensions, or Art. 262 in Chap, v., if the motion be in three

dimensions.

288. Sudden Fixtures. A rigid body is moving freely in

space in a known manner. Suddenly a straight line in the body
becomes fixed, or perhaps its motion is changed in some given

manner. It is required to find the changes which occur in the

motion of the rest of the body.

Such problems as these are all solved by one mechanical prin-

ciple. The change in the motion is produced by impulsive forces

acting along this straight line. Hence, by Art. 283, the angular

momentum of the hody about the axis is the same after as before

the change took place. This dynamical principle will supply one

equation which is sufficient to determine the subsequent motion of

the body round the straight line.

We may also use this principle in a more general case. Sup-

pose we have any system of moving bodies which suddenly become

rigidly connected together and are constrained to turn round some

axis. Then the subsequent angular velocity about this axis may
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be found by equating the angular momentum of the system about
this axis after the change to that before the change.

In applying this principle to different bodies it is convenient

to use different methods of finding the angular momentum. The
following list will assist the reader in choosing the method best

adapted to each particular case.

289. Case 1. Suppose the body to be a disc moving in any
manner in its own plane, and let the axis whose motion is changed
be perpendicular to its plane. This case has been already solved

in Art. 171.

y 290. Case 2. Suppose the body to be a disc turning about
an instantaneous axis Ox in its own plane with an angular a^cjs g>.

Let an axis Ox also in its own plane be suddenly fixed.

In this case the calculation of the angular momentum is so

simple that we may best recur to first principles.

Let d(j be any element of the area of the disc; y, y' its dis-

tances from Ox^ Ox'. Then yw, y'oy are the velocities of da just

before and just after the impact. The moments of the momentum
about Ox just before and just after are therefore yy'wda and
y'^w'da: Summing these for the whole area of the disc, we have

wXy^da- = (oXyyda- (1).

First, let Ox, Ox' be parallel, so that the point is at in-

finity. Let h be the distance between the axes, then y'=y — h.

Hence we have
u>"ty'^d(T = ft) {ty^da- — K^yda].

Let A, A' be the moments of inertia of the disc about Oa?,

Ox respectively, y the distance of the centre of gravity from Ox,M the mass of the disc. Then we have

A'a>=(o{A-Mhy),

Secondly, let Ox, Ox not be parallel. Let be the origin
and the angle xOx = a, then y' = y cos a — x sin a. Let F be the
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product of inertia of the disc about Ox, Oy where Oy is perpen-
dicular to Ox. Then by substitution in (1) we have

A'(o' = &) (J. cos a — i^ sin a).

Ex, 1. An elliptic area of eccentricity e is turning about one latus rectum.

Suddenly tliis latus rectum is loosed and the other fixed. Show that the angular

1 -Ae^
velocity is ,

—

^-„ of its former value.

Ex. 2. A right-angled triangular area ACB is turning about the side AC.
Suddenly AG is loosed and BC fixed. If G be the right angle, the angular velocity

TiO
is X—777 of its former value.

2 . AG

/ 291. Case 3. Let the body be turning round an instan-

taneous axis 01 with a known angular velocity w, and let some
axis 01' which intersects the former in some point be suddenly
fixed.

Let I, m, n be the direction-cosines of 01 referred to the prin-

cipal axes at 0, and I', m, n the direction-cosines of 01'. Then by
Art. 264, the angular momenta about these principal axes just

before the change are Aal, Bcom, Gcon. The angular momentum
about OT just before the change is therefore (by Art. 265)
{AW + Bmm' + Cnn) co. If m be the angular velocity of the body
about OT just after OT becomes fixed in space the angular mo-
mentum is {AP + Bm'^ + Cn^) w . Equating these we have w.

Ex. When a body turns about a fixed point the product of the moment of

inertia about the instantaneous axis into the square of the angular velocity is called

the vis viva. Let 2r be the vis viva of the body when it is turning freely about

the axis 01, and 2r' its vis viva when the axis 01' is suddenly fixed. Construct

the momental ellipsoid at the point 0, and let 6 be the angle between the eccentric

lines of the two axes 01, 01'. Prove that T'=T cos^^. It follows that the vis viva

is always lessened by fixing a new axis.

sj 292. Case 4. Let the motion of the body be given by its

components of motion n, v, w, m^, w^, co^, the centre of gravity

being the base point. Let the equation to the straight line whose

motion is suddenly changed be —j^= -—- =
, where I, m,n

are the actual direction-cosines.

Suppose this straight line to be suddenly fixed in space. The
angular momentum before the " fixing " is given in Art, 266. If

to' be the angular velocity about this straight line after the

"fixing," the angular momentum is Ico', where / is given in Art. 18,

Ex. 9. Equating these we have &>',

\ 293. Suppose the sudden motion forced on the straight line

to be represented by the velocities U, V, W of some point P on

the straight line and the angular velocities 0,
(f),

-^. Then the
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motion of the body may be represented by the linear velocities

U, V, W of the same base P and the aogular velocitities 6 + HZ,

^ + Urn, yjr + iln where fl is the only unknown quantity.

The angular velocities 6, (p, \p may be chosen in an infinite variety of ways to

represent the given motion of the straight line, because an angular velocity about

the straight line does not move the line itself. JI 6, (f>, ^ have been chosen to

make the component l9+ in^ + n\}/ about the line equal to zero, and if {I, m, n) be

the actual direction-cosines of the straight line, then will be the angular velocity

of the body about the axis just after the change.

This quantity fl, whatever meaning it may have, is to be found

by equating the angular momentum about the axis before and after

the change. These momenta may be written down as explained

in Art. 266.

1/ 294. Suppose the sudden motion forced on the straight line

to be represented by the given velocities of two points P, P'

on the line. And let the required motion of the body after the

change be represented by the components of motion u, v', w',

Q)J, (oj, o)/ at the centre of gravity taken as the base. The an-

gular momentum both before and after the change may be written

down by Art. 266. Equating these we have the dynamical equa-

tion. The resolved velocities of P and P' may be found by Art.

238 and equated to their given forced values. Thus we have on

the whole six independent equations to find the six components of

motion after the change.

Ex. 1. An elliptic disc is at rest. Suddenly one extremity of the major axis

and one extremity of the minor are made to move perpendicular to the plane of

the disc with velocities U and V. Show that the centre of gravity will begin to

move with a velocity equal to ^{U+V).

Ex. 2. An elliptic disc is at rest. Suddenly one extremity of the latus rectum

is made to move parallel to the major axis with a velocity U, while the other

extremity is made to move perpendicular to the plane of the disc with a velocity W.

Show that the velocities of the centre resolved parallel to the axes of the disc are

U Ue W
2' 2(l-e2)' 2(l + 4e*-')'

Ex. 3. A circular disc turning freely in its own plane which is vertical falls on

another equal circular disc whose plane is horizontal and which is turning about

a fixed vertical axis through its centre. At the moment of impact the two discs

become rigidly connected. If the point of impact bisect a radius of the horizontal

circle, show that the angular velocity about the fixed vertical axis is reduced

one half.

Ex. 4. Let the motion of a free body be given by the components m, «, w,

Wj., Uy, Wg referred to any base. Let the sudden motion given to a straight line be

represented by the components XJ, V, W, 6, <p, ^ referred to the same base. Then
the relative motion is given by the components u-U,v -V, <fec. Taking these as

the given quantities, find the components of motion after the change on the

supposition that the straight line is suddenly fixed. Let these results be u', v', Ac.
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Then prove that the required motion is represented by the components C+u',
V+v', Ac.

This process of solution may be called reducing the straight line to rest.

1^295. Case 5. In some cases instead of a straight line, some
one point P in the body is seized and made to move in some
given manner. In this case the angular momentum about every
straight line through the fixed point is unchanged. Choosing
some three convenient axes through the point and equating the
angular momentum about each before the change to that after

the change we have three dynamical equations. Besides these

we have the geometrical equations supplied by Art. 238, to ex-

press the fact that the resolved velocities of P are equal to the

given forced velocities. In this way we may form six equations to

find the six components of motion.

296. Let us consider an example of this process. Suppose
the motion of the body to be given by the components u, v, w,

(o^, <o^, 0)^, the centre of gravity being the base ; and let the point

P whose co-ordinates are /, g, h be suddenly fixed. Let A, B, G,

D, E, F be the moments and products of inertia of the body
about the axes at the centre of gravity, and let accented letters

represent the corresponding quantities for parallel axes at P. Let

12^, Ily, ri^be the required angular velocities of the body about

the axes meeting at P parallel to those at the centre of gravity.

Then the equations of momenta give

A(o, - F(o^ -E(o, +M (vh - wg) = A'n, - F£l^ - ED.,,

- Fa>,+ B(o^ - D(o, + M {wf- uh) = - F'n^ + Ba^ - D'£l,,

- Eco^ - Doy^ + Cco, +M (ug - vf) = - E'D^ - D'il^ + Cn,.

It is obvious these equations may be greatly simplified by choosing

the axes so that one set may be principal axes.

297. If the body be turning about an axis GI through the

centre of gravity G just before the point P is fixed, the terms which

contain the velocities of the centre of gravity disappear from the

equations. They now admit of an easy geometrical interpretation.

The equation to the momental ellipsoid at the centre of gravity is

AX' + BY' +CZ'- 2DYZ- 2EZX- 2FXY= iMe\

It is therefore clear that the left-hand sides of these equations are

proportional to the direction- cosines of the diametral plane of a

straight line whose direction-cosines are proportional to (w^, <w„, wj.

In the same way if we construct the momental ellipsoid at P, the

right-hand sides are proportional to the direction-cosines of the

diametral plane of the axis (O^, fl„, CI,). Thus the instantaneous

axes of rotation, before and after P is fixed, are so related that

their diametral planes with regard to the momental ellipsoids at

G and P respectively are parallel.
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298, We may also deduce this result, without difficulty, from

Art. 118. The motion of the body about the axis GI may be
produced by an impulsive couple in the diametral plane of 01
with regard to the momental ellipsoid at G. Let us then suppose

the body at rest and P fixed, and let it be acted on by this couple.

It follows from the same article, that the body will begin to turn

about an axis PI' which is such that its diametral plane with

regard to the momental ellipsoid at P is parallel to the plane of

the couple.

The direction of the blow at P may also be easily found. The
centre of gravity being at rest suddenly begins to move perpen-

dicular to the plane containing it and the axis PF . This is

obviously the direction of the blow.

299. Ex. 1. A sphere in co-latitude B is hung up by a point in its surface in

equilibrium under the action of gravity. Suddenly the rotation of the earth is stopped,

it is required to determine the motion of the sphere. [Math. Tripos, 1857.]

Let G be the centre of the sphere, its point of suspension, and a its radius.

Let C be the centre of the earth. Let us suppose the figure so drawn that the

sphere is moving away from the observer.

Let w= angular velocity of the earth, then if CG=fia, the sphere is turning

about an axis Gp parallel to CP, the axis of the earth, vnth angular velocity a,

while the centre of gravity is moving with velocity /la sin 5 .'w.

Let OC, Op, and the perpendicular to the plane of OC, Op be taken as the axes

of X, y, z respectively, and let fi^., Qy, fi^ be the angular velocities about them just

after the rotation of the earth is stopped.

By Art. 295, the angular momenta about Ox, just before and just after the

rotation was stopped, are equal to each other

;

where MTt"^ is the moment of inertia of the sphere about a diameter.

Again, the angular momenta about Oy are equal to each other

;

.-. -Mk'^<asi3ie-\-Miw?wsiiie=M(k^->ra?)Qy.
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Lastly, the angular momenta about Oz are equal; .-. 0=Mk^Q^.

Solving these equations, we get fi,,=w sin^ z]L±]^-^ gjn^
-^ + on

k- + (fi 7

But i},= w cos^. Adding together the squares of fi,, Uy, fi, we hkve

where is the angular velocity of the sphere about its instantaneous axis.

Ex. 2. A particle of mass M, without velocity, is suddenly attached to the
surface of the earth at the extremity of a radius vector making an angle 6 with the
axis of the earth. If E be the mass of the earth before the addition of M, A and C
its principal moments of iaaertia at the centre, w the angular veloijity about its

axis, prove that

V _ - EMAr' sin^g
0~ {E +M)AC+ EMCr^cos''e''

_.^ .^E +M A
c©t^ = cot^ + E ' Mr^ sine cos '

where 8 is the initial angular velocity about an axis parallel to the axis of the earth

and <p is the angle the initial axis of rotation makes with the axis of the earth.

Ex. 3. A regular homogeneous prism whose normal section is a regular polygon

of n sides rolls on a perfectly rough plane. Prove that, when the axis of rotation

changes from one edge to another, the angular velocity is reduced in the ratio of

2 + 7 cos— : 8 + cos —

.

n n

\f 800. Gradual Changes. In these examples the changes
produced in the motion were sudden, but the method of pro-

ceeding is the same if the changes are gradual.

Ex. 1. A bead of mass m slides on a circular wire of mass M and radius o,

and the wire can turn freely about a vertical diameter. Prove that, if w, Q be the

angular velocities of the wire when the bead is respectively at the extremities of

a horizontal and vertical diameter, - = 1 + 2 — •

w M
Ex. 2. If the earth gradually contracted by radiation of heat, so as to be always

similar to itself as regards its physical constitution and form, prove that when everj-

radius vector has contracted an n"* part of its length, where n is small, the angular

velocity has increased a 2n^^ part of its former value.

Ex. 3. If two railway trains each of mass M were to travel in opposite

directions from the pole along a meridian and to arrive at the equator at the same

2ifo*
time, prove that the angular velocity of the earth would be decreased by ~^^ of

itself, where a is the equatorial radius of the earth and Ek'^ its moment of inertia

about its axis of figure.

What would be the effect if one train only were to travel from the pole to the

equator ?

Ex. 4. A fly alights perpendicularly on a sheet of paper lying on a smooth

horizontal plane and proceeds to describe the curve r=f(6) traced on the sheet of

paper, the equation to the curve being referred to the centre of gravity of the paper

R. D. 16
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as origin. Supposing the fly to be able to prevent himself from slipping on the

paper, show that his angular velocity in space about the common centre of gravity

of the paper and fly is equal to ,~

—

r^^- 5 -j- , where M and m are the masses

of the paper and the fly and k is the radius of gyration of the paper about its

centre of gravity. Hence find the path of the fly in space.

Ex. 5. Suppose the ice to melt from the polar regions twenty degrees round

each pole to the extent of something more than a foot thick, enough to give 1-^ feet

over those areas or "066 of a foot of water spread over the whole globe, which would

in reality raise the sea-level by only some such undiscoverable difference as fth of

an inch or an inch, then this would slacken the earth's rate as a time-keeper by

one-tenth of a second per year. This and the next example are taken from the

Phil. Mag. They are both due to Sir W. Thornson.

If E be the mass of the earth, a its radius, k its radius of gyration about the

polar axis, w its angular velocity before the melting, then we have by the principle

of angular momentum —=- - „ cos0(l-Fcos^), where M is the mass of the ice

melted and 6 is twenty degrees. Substituting for the letters their known numerical

values, the value of Sw is easily found.

Ex. 6. A layer of dust is formed on the earth h feet thick, where h is small, by

the fall of meteors reaching the earth from all directions. Show that the change in

the length of the day is nearly — ^ of a day, where a is the radius of the earth

in feet, p and D the densities of the dust and earth respectively. If the density of

the dust be twice that of water and h=-^, express this in numbers.

The Invariable Plane.

V 301. It is shown in Art. 72 of Chap. 11., that all the moment
of the several particles of a system in motion, are together equi-

valent to a single resultant linear momentum at any assumed
origin 0, represented in direction and magnitude by a line OV,
together with an angular momentum about some line passing

through Oy represented in direction and magnitude by a line OH.
Let /ij, h^, h^ be the moments of the momenta of the particles

about any rectangular axes Ox, Oy, Oz meeting in 0, so that

i

7 .^ f dz dy\

with similar expressions for \,h^, and let h^ - h^ + h^ + h^^. Then

the direction-cosines of OH are -y*-, -^ , ^ and the angular mo-

mentum itself is represented by h.

If no external forces act on the system then by Art. 72 or Art.

283 Aj, h^, h^ are constant throughout the motion, hence OH is

fixed in direction and magnitude. It is therefore called the in-
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variable line at 0, and a plane perpendicular to OH is called the
invariable plane at 0.

If any straight line OL be drawn though making an angle 6
with the invariable line OH at 0, the angular momentum about
OL is h cos 6. For the axis of the resultant momentum-couple
is OH, and the resolved part about OL is therefore OH oos 6.

Hence the invariable line at may also be defined as that axis

through about which the moment of the momentum is greatest.

At different points of the system the position of the invariable

line is different. But the rules by which they are connected are

the same as those which connect the axes of the resultant couple

of a system of forces when the origin of reference is varied. These
have been already stated in Art. 235 of Chap, v., and it is un-
necessary here to do more than generally to refer to them.

^302. The position of the invariable plane at the centre of

gravity of the solar system may be found in the following manner.

Let the system be referred to any rectangular axes meeting in the

centre of gravity. Let co be the angular velocity of any body
about its axis of rotation. Let Mk^ be its moment of inertia

about that axis and (a, yS, 7) the direction-angles of that axis.

The axis of revolution and two perpendicular axes form a system

of principal axes at the centre of gravity. The angular momentum
about the axis of revolution is Mk^w, and hence the angular mo-
mentum about an axis parallel to the axis of z is Mk^w cos 7. The
moment of the momentum of the whole mass collected at the

centre of gravity about the axis oi z is M (x -^ — y -jr) , hence we

have

The values of h^, \ may be found in a similar manner. The posi-

tion of the invariable plane is then known.

V 303. The Invariable Plane may be used in Astronomy as a

standard of reference. We may observe the positions of the

heavenly bodies with the greatest care, determining the co-ordi-

nates of each with regard to any axes we please. It is, however,

clear, that unless these axes are fixed in space, or if in motion

unless their motion is known, we have no means of transmitting

our knowledge to posterity. The planes of the ecliptic and the

equator have been generally made the chief planes of reference.

Both these are in motion and their motions are known to a near

degree of approximation, and will hereafter probably be known more

accurately. It might, therefore, be possible to calculate at some

future time, what their positions in space were when any set of

vahiable observations were made. But in a very long time some

16—2
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error may accumulate from year to year and finally become con-

siderable. The present positions of these planes in space may also be

transmitted to posterity by making observations on the fixed stars.

These bodies, however, are not absolutely fixed, and as time goes

on, the positions of the planes of reference would be determined

from these observations with less and less accuracy. A third

method, which has been suggested by Laplace, is to make use of

the Invariable Plane. If we suppose the bodies forming our

system, viz. the sun, planets, satellites, comets, «&c., to be subject

only to their mutual attractions, it follows from the preceding

articles that the direction in space of the Invariable Plane at the

centre of gravity is absolutely fixed. It also follows from Art. 79

that the centre of gravity is either at rest or moves uniformly in

a straight line. We have here neglected the attractions of the

stars. These, however, are too small to be taken account of in

the present state of our astronomical knowledge. We may, there-

fore, determine to some extent the positions of our co-ordinate

planes in space, by referring them to the Invariable Plane as being

a plane which is more nearly fixed than any other known plane in

the solar system. The position of this plane may be calculated at

the present time from the .present state of the solar system, and at

any future time a similar calculation may be made founded on the

then state of the system. Thus a knowledge of its position cannot

be lost. A knowledge of the co-ordinates of the Invariable Plane

is not, however, sufficient to determine conversely the position of

our planes of reference. We must also know the co-ordinates of

some straight line in the Invariable Plane whose direction is also

fixed in space. This, as Poisson has suggested, is supplied by th(

projection on the Invariable Plane of the direction of motioi

of the centre of gravity of the system. If the centre of gravit;

of the solar system were at rest or moved perpendicularly t(

the Invariable Plane, this would fail. In any case our knowledge

of the motion of the centre of gravity is not at present sufficieni

to enable us to make much use of this fixed direction in space.

^ 304. If the planets and bodies forming the solar system

be regarded as spheres whose strata of equal density are concen-

tric spheres, their mutual attractions act along the straight line

joining their centres. In this case the motions of their centre

will be the same as if each mass were collected into its centre ol

gravity, while the motion of each about its centre of gravitj

would continue unchanged for ever. Thus we may obtain another|

fixed plane by omitting these latter motions altogether. This

what Laplace has done, and in his formulae the terms depenc _
on the rotations of the bodies in the preceding values of Aj, h^, hi

are omitted. This plane might be called the Astronomical Invari-^

able Plane to distinguish it from the true Dynamical Invariably

Plane. The former is perpendicular to the axis of the momentui
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couple due to the motions of translation of the several bodies,
the latter is perpendicular to the axis of the momentum couple
due to the motions of translation and rotation.

The Astronomical Invariable Plane is not strictly fixed in
space, because the mutual attractions of the bodies do not strictly

act along the straight lines joining their centres of gravity, so that
the terms omitted in the expressions for \,h^, h^ are not abso-
lutely constant. The effect of precession is to make the axis of

rotation of each body describe a cone in space, so that, even though
the angular velocity is unaltered, the position in space of the Astro-
nomical Invariable Plane must be slightly altered. A collision

between two bodies of the system, if such a thing were possible,

or an explosion of a planet similar to that by which Gibers sup-
posed the planets Pallas, Ceres, Juno and Vesta, &c., to have been
produced, might make a considerable change in the sum of the
terms omitted. In this case there would be a change in the
position of the Astronomical Invariable Plane, but the Dynamical
Invariable Plane would be altogether unaffected. It might be
supposed that it would be preferable to use in Astronomy the

true Invariable Plane. But this is not necessarily the case, for

the angular velocities and moments of inertia of the bodies form-
ing our system are not all known, so that the position of the

Dynamical Invariable Plane cannot be calculated to any near
degree of approximation, while we do know that the terms into

which these unknown quantities enter are all very small or nearly

constant. All the terms rejected being small compared with

those retained, the Astronomical Invariable Plane must make
only a small angle with the Dynamical Invariable Plane. Al-

though the plane is very nearly fixed in space, yet its intersection

with the Dynamical Invariable Plane, owing to the smallness of

the inclination, may undergo considerable changes in course of

time.

In the Mecanique Celeste, Laplace calculated the position of

the Astronomical Invariable Plane at the two epochs, 1750 and

1950, assuming the correctness for this period of his formulas for

the variations of the eccentricities, inclinations and nodes of the

planetary orbits. At the first epoch the inclination of this plane

to the ecliptic was 1""7689, and longitude of the ascending node
114*'-3979 ; at the second epoch the inclination will be the same as

before, and the longitude of the node 114'''3934.

305. Ex. 1. Show that the invariable plane at any point of space in the

straight line described by the centre of gravity of the solar system is parallel to

that at the centre of gravity.

Ex. 2. If the invariable planes at all points in a certain straight hne are

parallel, then that straight line is parallel to the straight line described by the

centre of gravity.
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Impulsive Forces in Three Dimensions,

306. Constrained single body. To determine the general

equations of motion of a body about a fixed point under the action

of given impulses.

Let the fixed point be taken as the origin, and let the axes

of co-ordinates be rectangular. Let (O^, H^, Q,^), (w^., &>„, o>,) be

the angular velocities of the body just before and just after the

impulse, and let the differences a>^—D,^, coy—il^, o>,— fl, be

called coj, eoj, o)/. Then cd^, Wy', co^ are the angular velocities

generated by the impulse. By D'Alembert's Principle, see Art. 87,

the difference between the moments of the momenta of the par-

ticles of the system just before and just after the action of the

impulses is equal to the moment of the impulses. Hence by
Art. 262

Ad)J— (%mxy)(Oy — (^mxz)(o^' = L \

Bcoy - i^myz)a)^- (tmyx)(o^= M\ (1),

Cft),' — (%mzx)(o^ — (2,mzy)a}y= N)

where L, M, N are the moments of the impulsive forces about the
axes.

These three equations will suffice to determine the values of

^x'> ^y'' ^z- These being added to the angular velocities before

the impulse, the initial motion of the body after the impulse is

found.

^/ 307. Ex. 1. Show that these equations are independent of each other.

This follows from Art. 20, where it is shown that the eliminant of the equatioi

cannot vanish.

Ex. 2. Show that if the hody be acted on by a finite number of given impulse

following each other at infinitely short intervals, the final motion is independenlj

of their order.

V 308. It is to be observed that these equations leave the axes

of reference undetermined. They should be so chosen that thi

values of A, ^mxy, &c. may be most easily found. If the posi-^

tions of the principal axes at the fixed point are known they wil"

in general be found the most suitable.

In that case the equations reduce to the simple form

A(o^ = L\
Ba>; = M\ (2).

The values of 03^, mj, w,' being known, we can find the prea

sures on the fixed point. Fbr by D'Alembert's Principle thi

change in the linear momentum of the body in any direction
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.(3).

equal to the resolved part of the impulsive forces. Hence if

F, Q, H be the pressures of the fixed point on the body

2X+i^=ilf.^byArt. 86

=M {wyZ - (ojy) by Art. 238

XY+G = M((o:x-(oJz)

^Z+H =M {(c^y - cojx)

y 309. Ex. A uniform disc bounded by an arc OP of a parabola, the axis ON,

and the ordinate PN, has its vertex fixed. A blow B is given to it perpendicular

to its plane at the other extremity P of the curved boundary. Supposing the disc to

be at rest before the application of the blow, find the initial motion.

Let the equation to the parabola be y^=iax and let the axis of z be perpen-

dicular to its plane. Then 'Z.mxz=Q, 'Zmyz=0. Let
fj.
be the mass of a unit of area

and let 0^=c. Also 2ma;!/=/i I jxydxdy= ij.l a;^Ar= 2/i/ ax^dx = -ixa(?,

A
==l'll

3 5

y^dx=^na'^c'^,
16
"15^ B =

'l)
x^ydx= -fji.a^c^, and C= A + B, by Art. 7.

The moments of the blowB about the axes are Z,=B ^4ac, 31= -Be, N=0. The

equations of Art. 306 will become after substitution of these values

-^IJ.ac^Uy=2Ba^c^
16 « 4

fia' c Ux
15

7 o

«,=-0

„ V ^ w„ 7 2jac
From these w„ w, may be found. By eliminatmg B we have - =

25
—~ •

Hence if NQ be taken equal to ^ NP, the disc will begin to rotate about OQ. The

75 B
resultant angular velocity will be ^ —-3 OQ.

310. New statement of the Problem. When a body free

to turn about a fixed point is acted on by any number of impulses,
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each impulse is equivalent to an equal and parallel impulse acting

at the fixed point together with an impulsive couple. The im-

pulse at the fixed point can have no effect on the motion of the

body, and may therefore be left out of consideration if only the

motion is wanted. Compounding all the couples, we see that

the general problem may be stated thus :—A body moving about
a fixed point is acted on by a given impulsive couple, find the

change produced in the motion. The analytical solution is com-
prised in the equations which have been written down in Art. 306.

The following examples express the result in a geometrical form.

Ex. 1. Show from these equations that the resultant axis of the angular

velocity generated by the couple is the diametral line of the plane of the couple

with regard to the momental ellipsoid. See also Art. 118.

Ex. 2. Let G be the magnitude of the eouple, p the perpendicular from the

fixed point on the tangent plane to the momental eUipsoid parallel to the plane

of the couple G. Let be the angular velocity generated, r the radius vector of

the ellipsoid which is the axis of 0. Let Me* be the parameter of the ellipsoid.

^ ^, , G Me*
Prove that ^r = — .

il pr

Ex. 3. If 0„ fi^, 0, be angular velocities about three conjugate diameters of

the momental ellipsoid at the fixed point, such that their resultant is the angular
velocity generated by an impulsive eouple G, A', B', C the moments of inertia

about these conjugate diameters, prove that

yl '0^= G cos o, J5'fi,= G c«s |3, CO,= G cos y,

where o, /3, y are the angles the axis of G makes with the conjugate diameters.

Ex. 4. If a body free to turn about a fixed point O be acted on by an impulsive

couple G, whose axis is the radius vector r of the ellipsoid of gyration at 0, and if

p be the perpendicular from on the tangent plane at the extremity of r, then the

axis of the angular velocity generated by the blow wUl be the perpendicular p, and
the magnitude H is given by G = Mp}-iL

Ex. 5. Show that if a body at rest be acted on by any impulses, we may take

moments about the initial axis of rotation, according to the rule given in Art. 89,

as if it were a fixed axis.

Ex. 6. When a body turns about » fixed point the product of the moment of

inertia about the instantaneous axis into the square of the angular velocity is

called the Vis Viva. Let the vis viva generated from rest by any impulse be 2T,
and let the vis viva generated by the same impulse when the body is constiained to

turn about a fixed axis passing through the fixed point be 2T'. Then prove that

T'=T cos^^, where e is the angle between the eccentric lines of the two axes of

rotation with regard to the momental ellipsoid at the fixed point.

Ex. 7. Hence deduce Euler's theorem, that the vis viva generated from rest

by an impulse is greater when the body is free to turn about the fixed point, than
when constrained to turn about any axis through the fixed point. This theorem
was afterwards generalized by Lagrange and Bertrand in the second part of the first

volume of the M6canique Analijtique.
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311. Free single body. To determine the motion of afree
body acted on by any given impulse.

Since the body is free, the motion round the centre of gravity

is the same as if that point were fixed. Hence the axes being any
three straight lines at right angles meeting at the centre of

gravity, the angular velocities of the body may still be found by
equations (1) and (2) of Art. 306.

To find the motion of the centre of gravity, let {U, V, W),
(u, V, w) be the resolved velocities of the centre of gravity just

before and just after the impulse. Let X, Y, Z be the com-
ponents of the blow, and let M be the whole mass. Then by
resolving parallel to the axes we have

M{u-U) = X, M{v-V)=Y, M{w-W) = Z.

If we follow the same notation as in Art. 306, the differences

u — U, V — V, w — W may be called u, v, w.

312. Ex. 1. A body at rest is acted on by an impulse whose components

parallel to the principal axes at the centre of gravity are (X, Y, Z) and the co-

ordinates of whose point of application referred to these axes are (p, q, r). Prove

that if the resulting motion be one of rotation only about some axis,

A (B - G)pYZ + B(G-A) qZX+C(A-B) rAT=0.

Is this condition sufficient as well as necessary ? See Art. 241.

Ex. 2. A homogeneous cricket-baU is set rotating about a horizontal axis in

the vertical plane of projection with an angular velocity 0. When it strikes the

ground, supposed perfectly rough and inelastic, the centre is moving with velocity

F in a direction making an angle a with the horizon, prove that the direction of

the motion of the ball after impact will make with the plane of projection an angle

tan~i where a is the radius of the ball.
5 Fcoso

313. Motion of any point of the body. The equations of

Art. 311 completely determine the motion of a free body acted on

by a given impulse, and from these by Art. 238 we may determine

the initial motion of any point of the body. Let (p, q, r) be the

co-ordinates of the point of application of the blow, then the

moments of the blow round the axes are respectively qZ—rY,
rX — pZ, pY—qX. These must be written on the right-hand

sides of the equations of Art. 306. Let {p, q, r) be the co-

ordinates of the point whose initial velocities parallel to the axes

are required. Let {n^, v^, wj, (w^, v^, w^ be its velocities just

before and just after the impulse. Let the rest of the notation

be the same as that used in Art. 306. Then

u^ — u^ — u-\- (Oyr — (olq,

with similar equations for v^-v^, «^2~^r Substituting in these

equations the value of xi , v, w' , wj, w„', w/ given by Art. 311 wc
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see that u^ — u^,v^ — v^, w^ — w^ are all linear functions of X, Y, Z
of the first degree of the form

u^-u^ = FX-\-GY-\-HZ,

where F, G, H are functions of the structure of the body and the

co-ordinates of the two points.

314. When the point whose initial motion is required is the

point of application of the blow, and the axes of reference the

principal axes at the centre of gravity, these expressions take the

simple forms

The right-hand sides of these equations are the differential

coefficients of a quadratic function of X, Y, Z, which we may call

E. It follows that for all blows at the same point P of the same
body the resultant change in the velocity of the point P of appli-

cation is perpeiidicular to the diametral plane of the direction of
the blow with regard to a certain ellipsoid whose centre is at P,

and whose equation is E = constant.

The expression for E may be written in either of the equi-

valent forms.

2E=?^^±^ +^{{Af + B^+Gr^){AX^+ BY' + CZ')

-(ApX + BqY+CrZf}.

=
^^''m^^^ + J i^Z- rYf + 1 {rX-pZ) + ^ (pF- qX)\

In this latter form we see that it is

= M{u^ + v" ^ w") + A(oJ' + Bco," + Ca>;^

which is the vis viva of the motion generated by the impulse.

Impact of any two Bodies.

315. Two bodies moving in any manner impinge on each other,

find tJie motion after impact.

Inelastic Bodies. If the bodies be inelastic and either per-

fectly smooth or perfectly rough, it is unnecessary to introduce the
reactions into the equations. In such a case we take the point of

\
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contact for the origin. Let the axes of x and 1/ be in the tangent
plane and that of z be normal. Let U, V, W be the resolved
velocities of the centre of gravity of one body just before the im-
pact and u, V, w the resolved velocities just after the impact. Let
H^, I2„, O^, CD^, ft)j„ ft), be the angular velocities just before and just

after. Let A, B, 0, D, E, F be the moments and products of

inertia at the centre of gravity. Let M be the mass of the body,
and X, y, z the co-ordinates of its centre of gravity. Let accented
letters denote the same quantities for the other body.

Then taking moments about the axes for one body we have,

by Arts. 306 and 76,

- F(co,- nj + B (a)„- n,) - D {CO- Q.,)-{w-W)x + {u-U)z = 0,

-E{<o,-£i:)-D{oy,-n,)-rG{co-£l,)-{u-U)y+{v-V)x = i).

Three similar equations apply for the other body which differ from

these only in having all the letters accented.

Resolving along the axis of z for both bodies, we have

if (w - F) + M\w' - W) = 0.

The relative velocity of compression is zero at the moment of

greatest compression, we have therefore

w — co^y + (o^ = w' — cojy' + cojx.

We thus have eight equations between the twelve unknown re-

solved velocities and angular velocities.

316. If the bodies be smooth we obtain four more by resolving

for each body parallel to the axes of x and y. For one body we
have u-U=0, v- V= 0,

with similar equations for the other body.

317. If the bodies be perfectly rough we obtain two of the

four equations by resolving the linear momenta parallel to the

axes of X and y, viz.

M{u-U)+M'(u-U') = 0]

M{v-V) + 3r{v-V') = 0\

We have also two geometrical equations obtained by equating to

zero the resolved relative velocity of sliding, viz.

u-a)yZ + w,y = w' - w^z' + w^y \
^

v — (o^x + Q)j! = v' - (o^x + cojz)
'

318. Smooth Elastic Bodies. If the bodies be smooth and

imperfectly elastic, we must introduce the normal reaction into

the equations. In this case we proceed exactly as in the general
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case when the bodies are rough and elastic, which we shall con-

sider in the following articles. The process is of course simplified

by putting the fractions P and Q both equal to zero in the twelve

equations of motion (1), (2), (3) and (4). We also have the velo-

city G of compression equal to zero at the moment of greatest

compression. Thus we have one more equation from which the

normal reaction R may be found. Multiplying this value of R
by 1 + e where e has the meaning given to it in Art. 179, we have

the complete value of R far the whole impact. Substituting this

last value of R in the twelve equations of motion (1) and (2), (3)

and (4), the motion of both bodies just after impact may be found.

319. Rough Elastic Bodies. The problem of determining

the motion of any two rough bodies after a collision involves some
rather long analysis and yet there are some points in which it

differs essentially from the same problem considered in two di-

mensions. We shall, therefore, first consider a special problem

which admits of being treated briefly, and will then apply the

same principles to the general problem in three dimensions.

320. Two rough ellipsoids moving in any vmnner impinge on

each other so that the extremity of a principal diameter of one

stnkes the extremity of a principal diameter of the other, and at

that instant the three principal diameters of one are parallel to

those of the other. Find the motion just after impact.

Let us refer the motion to co-ordinate axes parallel to the prin-

cipal diameters of either ellipsoid at the beginning of the impact.

Then since the duration of the impact is indefinitely small and
the velocities are finite, the bodies will not have time to change
their position, and therefore the principal diameters will be par-

allel to the co-ordinate axes throughout the impact.

Let U, V, W be the resolved velocities of the centre of gravity

of one body just before impact; u, v, w the resolved velocities at

any time t after the beginning of the impact, but before its termi-

nation. Let flj., Oy, n, be the angular velocities of the body just

before impact about its principal diameters at the centre of gravity;

Wj., (Oy, o), the angular velocities at the time t. Let a, b, c be the

semiaxes of the ellipsoid, and A, B, C the moments of inertia at

the centre of gravity about these axes respectively. Let Mhe the

mass of the body. Let accented letters denote the same quan-
tities for the other body. Let the bodies impinge at the extremi-
ties of the axes of c, c.

Let P, Q, R be the resolved parts parallel to the axes of the

momentum generated in the body M by the blow during the time

t. Then —F, — Q,—R are the resolved parts of the momentum
generated in the other body in the same time.
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The equations of motion of the body M are

B(co,-n,) = -Pc\ a)
(7(to,-a)=0

J

M(u-U) = P\

M(v-V) = q\ (2).

M{w-W) = Rj

There will be six corresponding equations for the other body
which may be derived from these by accenting all the letters on
the left-hand sides and writing — P^—Q^—H and - c for P, Q, R
and c on the right-hand sides of these equations. Let us call' these
new equations respectively (3) and (4).

Let S be the velocity with which one ellipsoid slides along the
other, and 6 the angle the direction of sliding makes with the
axis of X, then

S cos = u'+ c'coj - u + ccoy
(5)^

Ssm6 = v-ccoJ -v+cm^
(6).

Let C be the relative velocity of compression, then

G= w' — w (7»

Substituting in these equations from the dynamical equations
we have

ScosO = Sq cos 0q —jpP.

S sm6 = Sq sin 9^ — qQ.

C- G,-rR.

where

••(8),

..(9),

.(10),

s, cos e,= u'+ c'n;-u+ c^^

>Sf„sin^,= F'-c'n;-F+cn '

(11),

C,= W'-W

^~ m"^ M''^ a"^ A'

'^~M'^M'

,(12).

These are the constants of the impact. 8^, C^ are the initial

velocities of sliding, and 6^ the angle the direction of initial sliding

makes with the axis of x. Let us take as the standard case that

in which the body M' is sliding along and compressing the body M,
so that S^ and €!„ are both positive. The other three constants
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p, q, r are independent of the initial motion and are essentially

positive quantities.

321. Exactly as in two dimensions we shall adopt a graphical

method of tracing the changes which occur in the frictions. Let

us measure along the axes of x, y, z three lengths OP, OQ, OR to

represent the three reactions P, Q, R. Then if these be regarded

as the co-ordinates of a point T, the motion of T will represent

the changes in the forces. It will be convenient to trace the loci

given by <Si=0, (7= 0. The locus given by >S = is a straight

line parallel to the axis of R, which we may call the line of no

sliding. The locus given by = is a plane parallel to the plane

P, Q, which we may call the plane of greatest compression. At
the beginning of the impact one ellipsoid is sliding along the other,

so that according to Art. 154 the friction called into play is limit-

ing. Since P, Q, R are the whole resolved momenta generated in

the time t ; dP, dQ, dR will be the resolved momenta generated

in the time dt, the two former being due to the frictional, and the

latter to the normal blow. Then the direction of the resultant of

dP, dQ must be opposite to the direction in which one point of

contact slides over the other, and the magnitude of the resultant

must be equal to fidR, where /u, is the coefficient of friction. We
have therefore

dP^^^g^ Soo.0-pP
dQ S^sme^-qQ ^

{dPf + {dQf = ti\dRy (14).

The solution of these equations will indicate the manner in

which the representative point T approaches the line of no sliding.

The equation (13) can be solved by separating the variables.

We get

{S,co^d^-pP)i = a{8,^ine,-qQ)l

where a is an arbitrary constant. At the beginning of the motion

P and Q are zero, hence we have

(
S,cos0,-pP

\l _ (8,sin0,- qQ\
]

\ S,cos0, ) -\ S.smB, J
^^^^'

which may also be written

Scose-^l^f^AnJ^i
^jg^_

or
/sin^N.A /cos^A-^^ c, /sm^\.^^ /cos^A-^ /,KNS=SJ~.~^ )9-P.( jh-p (17).
Vsm 0J Vcos J ^ ^

This equation gives the relation between the direction and the

velocity of sliding.
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322. If the direction of sliding does not change during the
impact 6 must be constant and equal to 6^. We see froni'(lG)
that if 'p = q, then 6 = 6^; and conversely if ^=^^, ^ would be
constant unless p = q. Also if sin 6^ or cos 6^ be zero, 8 would
be zero or infinite unless 6 = 6^. The necessary and sufficient

condition that the direction of friction should not chan^'-e durino-

the impact is therefore p=g or sin 26^ = 0. The former of these
two conditions by (12) leads to

a l) + ^"(x'-yj = » (!«)

If this condition holds, we have by (13) P=Qcot9^ and
therefore by (14)

P = f^R CO. 6)

Q=fMRsm0j ^^^^•

It follows from these equations that when the friction is limit-

ing, the representative point T moves along a straight line making
an angle tsuf^/j, with the axis of R, in such a direction as to meet
the straight line of no sliding.

323. If the condition p=q does not hold, we may, by dif-

ferentiating (8) and (9) and eliminating P, Q, and ;S^, reduce the

determination of R in terms of 6 to an integi-al.

By substituting for S from (17) in (8) and (9), we then have
P, Q, R expressed as functions of 6. Thus we have the equations

to the curve along which the representative point T travels.

The curve along which T travels may more conveniently be
defined by the property that its tangent by (14) makes a constant

angle tan"^/A with the axis of R and its projection on the plane

of PQ is given by (15). And it follows that this curve must
meet the straight line of no sliding, for the equation (15) is satis-

fied by pP = /Sq cos 6^, qQ = S^ sin 6^.

324. The whole progress of the impact may now be traced

exactly as in the corresponding problem in two dimensions. The

representative point T travels along a certain knoivn curve, until

it reaches the line of no sliding. It then proceeds along the line

of no sliding, in such a direction that the abscissa E. increases.

The complete value Ug ^/ ^ /'^ ^^^ whole impact is found by

multiplying the abscissa Ej of the point at which T crosses the

plane of greatest compression by 1 -l-e so that E2=R,(l4-e), if ^

he the measure of the elasticity of the two bodies. The complete

values of the frictions called into play are the ordinates of the

positions of T corresponding to the abscissa E = E,. Substi-

tuting these in the dynamical equations (1), (2), (3), (4), the

motion of the tivo bodies just after impact may be found.
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325. Since the line of no sliding is perpendicular to the

plane of PQ, P and Q are constant when T travels along this line.

So that when once the sliding friction has ceased, no more friction

is called into play. If therefore sliding ceases at any instant

before the termination of the impact as when the bodies are

either very rough or perfectly rough, the whole frictional impulses

are given by

P ' 2 '

If a be the arc of the curve whose equation is (15) from the

origin to the point where it meets the line of no sliding, then the

representative point T cuts the line of no sliding at a point whose
_

<T C
abscissa is ^ = — . If the bodies be so rough that - < —^ , the

point T will not cross the plane of greatest compression until after

it has reached the line of no sliding. The whole normal impulse

C
is therefore given by i2 = —^ (1 + e). Substituting these values of

P, Q, R in the dynamical equations, the motion just after impact
may be found.

326. Ex. 1. If be the angle the direction of sliding of one ellipsoid over the

other makes with the axis of x, prove that d continually increases or continually

decreases throughout the impact. And if the initial value of 6 lie between and ^ ,

then 9 approaches - or zero according as p is > or < q. Show also that the repre-

sentative point reaches the line of no sliding when 6 has either of these values.

Ex. 2. If the bodies be such that the direction of sliding continues unchanged

during the impact and the sliding ceases before the temiination of the impact, the

S r
roughness must be such that u.> ;=

—

^ r

.

CoP(l + e)

Ex. 3. If two rough spheres impinge on each other, prove that the direction

of sliding is the same throughout the impact. This proposition was first given by

Coriolis. Jeu de billard, 1835.

Ex. 4. If two inelastic solids of revolution impinge on each other, the vertex

of each being the point of contact, prove that the direction of sliding is the same
throughout the impact. This and the next proposition have been given by,

M. Phillips in the fourteenth volume of Liouville's Journal.

Ex. 5. If two bodies having their principal axes at their centres of graviiyj

parallel impinge so that these centres of gravity are in the common normal at th(

point of contact and if the initial direction of sliding be parallel to a principal axisj

at either centre of gravity, then the direction of sliding will be the same throughout

the impact.

Ex. 6. If two ellipsoids of equal masses impinge on each other at the ex-

tremities of their axes of c, c', and if aa'=bb' and ca'= bc', prove that the directio;

of friction is constant throughout the impact.

1
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327. Two rough bodies moving in any manner impinge on
each other. Find the motion just after impact.

Let us refer the motion to co-ordinate axes, the axes of x, y
being in the tangent plane at the point of impact and the axis of z

along the normal. Let U, V, W be the resolved velocities of the

centre of gravity of one body just before impact, u, v, lo the re-

solved velocities at any time t after the beginning, but before the

termination of the impact. Let O^, fl^^, O^ be the angular velo-

cities of the same body just before impact about axes parallel to

the co-ordinate axes, meeting at the centre of gravity; w^, o)^, w,

the angular velocities at the time t. Let A, B, C, D, E, F be the

moments and products of inertia about axes parallel to the co-

ordinate axes meeting at the centre of gravity. Let M be the

mass of the body. Let accented letters denote the same quantities

for the other body.

Let P, Q, R be the resolved parts parallel to the axes of the

momentum generated in the body 31 from the beginning of the

impact, up to the time t. Then — P, —Q, - R are the resolved

parts of the momentum generated in the other body in the same

time.

Let (tc, y, z) {cc
, y\ z) be the co-ordinates of the centres of

gravity of the two bodies referred to the point of contact as origin.

The equations of motion are therefore

A{a>,-^:)-F{<o,-n,)-E{co,-n,) = -yR^zQ\
-F{<o,-Q.:) + B{co,-n,)-D{co,-n,) = -zP-\-xR\..(\),

-E{a>,-n,)-D{<o,-n,) + C(a>,-n,) = -xQ + yP^

M(u- U)=P\
' M{v-V) = qI (2).

M{w-W} = r\

We have six similar equations for the other body, which differ

from these in having all the letters, except P, Q, R, accented, and

in having the signs of P, Q, R changed. These we shall call equa-

tions (3) and (4). Let S be the velocity with which one body

slides along the other and let 6 be the angle the direction of

sliding makes with the axis of x. Also let G be the relative velo-

city of compression, then

Scos6 = u' - (Oy'z + co^y -u+WyZ- w,y\

Ssm0 = v - w^x + (o^z -V + (ojv-(o^\ (5).

C= w' - cDjy'+ WyX -w-\-o)^y-(o^\

If we substitute from (1) (2) (3) (4) in (5) we find

,Sf„ cos e, -Sco^d=:aP+fQ+ eR\

S,sme,-Ssme=fP + bQ + dR\ (6),

C^-G=eP + dQ + cR)

B.D. 17
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where 8^,60, G^ are the initial values of S, 6, C and are found from

(5) by writing for the letters- their initial values. The expressions

for a, b, c, d, e,f are rather complicated, but it is unnecessary to

calculate them.

328. We may now trace the whole progress of the impact by

the use of a graphical method. Let us measure from the point of

contact 0, along the axes of co-ordinates, three lengths OP, OQ,

OR to represent the three reactions, P, Q, R. Then if, as before,

these be regarded as the co-ordinates of a point T, the motion of

T will represent the changes in the forces. The equations to the

line of no sliding are found by putting ^=0 in the first two of

equations (6). We see that it is a straight line.

The equation to the plane of greatest compression is found by

putting C= in the third of equations (6).

At the beginning of the impact one body is sliding along the

other, so that the friction called into play is limiting. The path

of the representative point as it travels from is given, as in

Art. 321, by

%=4^=f,dR (7).
cos sm ^ ^

When the representative point T reaches the line of no sliding,

the sliding of one body along the other ceases for the instant.

After this, only so much friction is called into play as will suffice

to prevent sliding, provided this amount is less than the limiting

friction. If therefore the angle the line of no sHding makes withj

the axis of R be less than tan"^//,, the point T will travel along ii

But if the angle be greater than tan"V, more friction is necessai

to prevent sliding than can be called into play. Accordingly the

friction will continue to be limiting, but its direction will b<

changed if S changes sign. The point T will then travel along

curve given by equations (7) with 6 increased by tt.

The complete value R^ of R for the whole impact is found bj

multiplying the abscissaR of the point at which T crosses the plane

of greatest compression by 1 + e, where e is the measure of elasti<^

city, so that R^ = R^{1+ e). The complete values of P and Q ai

represented by the ordinates corresponding to the abscissa ^J
Substituting in the dynamical equations, the motion just aftel

impact may be found.

329. The path of the representative point before it reache

the line of no sliding must be found by integrating (7). Bj
differentiating (6) we have

d {S cos 6) _ adP + fdQ + edR _ afi cos +f/j. sin ^ + e .

d{Ssme)~fdP+bdQ + ddR~ffjLCO80 + bfjusm6-^d"'^''
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which reduces to

1 dS ~2~"'"~2~^°^^^'^'^^^^^^"^ -cos^ + -sin^

^r- sm 26 + /cos 26 + ~cos6-- sm ^

From this equation we may find >S^ as a function of 6 in the
form S=Af{6), the constant 4 being determined from the con-
dition that S— 8^ when 6= 6^. Differentiating the first of equa-
tions (6) and substituting from (7) we get

-^c?{cos^/(^)} = (/iacos(9+At/sin^ + e)^i? (10),

whence we find R= AF {6) -\-B, the constant B being determined
from the condition that R vanishes when 6 = 6^. By substituting

these values of S and R in the first two equations of (6) we find

P and Q in terms of 6. The three equations giving P, Q, R as

functions of 6 are the equations to the path of the representative

point. It should be noticed that the tangent to the path at any
point makes with the axis of R an angle equal to tan"^ yu,.

330. If the direction of friction does not change during the

impact, 6 is constant and equal to 6^, so that 6 cannot be chosen as

the independent variable. In this case P = /xR cos 6^, Q = fiR sin 6^

and the representative point moves along a straight line making
with the axis of R an angle tan"^//,. Substituting these values of

P and Q in the first two of equations (6) we have

-'^sin2^„+/cos2^,+ -cos^,--sm6',= (H),

as a necessary condition that the direction of friction should not

change. Conversely if this condition is satisfied the equations (6)

and (7) may all be satisfied by making 6 constant. In this case it

is also easy to see that the path of the representative point inter-

sects the line of no sliding.

If S^ be zero, the representative point is situated on the line

of no sliding. If the angle this straight line makes with the axis

of R be less than tan~V» the representative point will travel along

it. But if the angle be greater than tan"V' "lo^e friction is neces-

sary to prevent sliding than can be called into play. Since ^^o is

zero, the initial value of 6 is unknown. In this case differentiating

the first two equations of (6) and putting ^ = 0, we see by division

that the initial value of 6 must satisfy equation (11). The con-

dition that the direction of friction does not change is therefore

satisfied. This value of 6 makes the subject of integration in (9)

infinite so that the reasoning there given must be modified. But

by what has just been said, we see that the path of the repre-

sentative point is a straight line making with the axis of R an

angle equal to tan~*/^ and which has the proper initial value of 6.

17—2
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331. Ex.1. Let(?= A -F -E yR-zQ
-F B -D zP-xR

-E -D C xQ~yP
yR-zQ zF-xR xQ-yP

and let A be the determinant obtained by leaving out the last row and last column.

Let G', A' be the corresponding expressions for the other body. Then a, b, c, d, e, f
are the coefficients of P^, Q^ R\ 2QR, 2RP, 2PQ in the quadric

where 2E is a constant, which may be shown to be the sum of the vires vivse of

the motions generated in the two bodies, as explained in Art. 314.

This quadric may be shown to be an ellipsoid by comparing its equation with

that given in Art. 28, Ex. 3.

Show also that c, b, c are necessarily positive and ab > P, be > d\ ca > e^.

Show that by turning the axes of reference round the axis of R through the

proper angle we can make / zero.

Ex. 2. Prove that the line of no sliding is parallel to the conjugate diameter

of the plane containing the frictions P, Q. And the plane of greatest compression

is the diametral plane of the reaction R.

Ex. 3. The line of no sliding is the intersection of the polar planes of two

points situated on the axes of P and Q and distant respectively from the origin

Of 2S
. and -.— . The plane of greatest compression is the polar plane of

So cos ^0 SoBrndo

2E
a point on the axis of R distant -^ from the origin.

Ex. 4. The plane of PQ cuts the ellipsoid of Ex. 1 in an ellipse, whose axes

divide the plane into four quadrants ; the line of no sliding cuts the plane of PQ in

that quadrant in which the initial sliding Sq occurs.

Ex. 5. A parallel to the line of no sliding through the origin cuts the plane of

greatest compression, in a point whose abscissa jR has the same sign as Cj. Hence

show, from geometrical considerations, that the representative point T must cross

the plane of greatest compression.

EXAMPLES*.

1. A cone revolves round its axis with a known angular velocity. The altitude

begins to diminish and the angle to increase, the volume being constant. Show

that the angular velocity is proportional to the altitude.

2. A circular disc is revolving in its own plane about its centre; if a point in

the circumference become fixed, find the new angular velocity.

3. A uniform rod of length 2a lying on a smooth horizontal plane passes

through a ring which permits the rod to rotate freely in the horizontal plane. The
middle point of the rod being indefinitely near the ring any angular velocity is

* These examples are taken from the Examination Papers which have been set

in the University and in the Colleges.
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impressed on it, show that when it leaves the ring the radius vector of the middle

a?
point will have swept out an area equal to -^ .

o

4. An elliptic lamina is rotating about its centre on a smooth horizontal table.

If Wj, Wj, Wj be its angular velocities respectively when the extremities of its major

axis, its focus, and the extremity of the minor axis become fixed, prove

1 = 1 + 1
Wi Wa Wg

*

5. A rigid body moveable about a fixed point at which the principal moments
are A, B, C is struck by a blow of given magnitude at a given point. If the

angular velocity thus impressed on the body be -the greatest possible, prove that

(a, b, c) being the co-ordinates of the given point referred to the principal axes

at 0, and {I, m, n) the direction cosines of the blow, then

al+ bm+cn=0,

6. Any triangular lamina ABC has the angular point G fixed and is capable

of free motion about it. A blow is struck at B perpendicular to the plane of the

triangle. Show that the initial axis of rotation is that trisector of the side AB
which is furthest from B.

7. A cone of mass m and vertical angle 2a can move freely about its axis, and

has a fine smooth groove cut along its surface so as to make a constant angle /3

with the generating lines of the cone. A heavy particle of mass P moves along

the groove under the action of gravity, the system being initially at rest with the

particle at a distance c from the vertex. Show that if d be the angle through which

the cone has turned when the particle is at any distance r from the vertex, then

mk^ + Pr^ sui^a_ 2esina.cotj3

m&2+ Pc2 sin^a"^ '

k being the radius of gyration of the cone about its axis.

8. A body is turning about an axis through its centre of gravity, a point in

the body becomes suddenly fixed. If the new instantaneous axis be a principal

axis with respect to the point, show that the locus of the point is a rectangular

hyperbola.

9. A cube is rotating with angular velocity w about a diagonal, when one of

its edges which does not meet the diagonal suddenly becomes fixed. Show that the

angular velocity about this edge as axis= —
j^

.

4 .y/o

10. Two masses m, m' are connected by a fine smooth string which passes

round a right circular cylinder of radius a. The two particles are in motion m
one plane under no impressed forces, show that if A be the sum of the absolute

areas swept out in a time t by the two unwrapped portions of the string,

T being the tension of the string at any time.
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11. A piece of wire in the form of a circle lies at rest with its plane in contact

•with a smooth horizontal table, when an insect on it suddenly starts walking along

the arc with uniform relative velocity. Show that the wire revolves round its

centre with uniform angular velocity while that centre describes a circle in space

with uniform angular velocity.

12. A uniform circular wire of radius a, moveable about a fixed point in its

circumference, lies on a smooth horizontal plane. An insect of mass equal to that

of the wire crawls along it, starting from the extremity of the diameter opposite

to the fixed point, its velocity relative to the wire being uniform and equal to V.

Prove that after a time t the wire wUl have turned through an angle

n
2a

-ptan-i( -ptan^
)

13. A small insect moves along a uniform bar of mass equal to itself, and

length 2a, the extremities of which are constrained to remain on the circumference

2a
of a fixed circle, whose radius is —p. . Supposing the insect to start from the middle

/s/3

point of the bar, and its velocity relatively to the bar to be uniform and equal to V ;

1 Vt
prove that the bar in time t will turn through an angle— tan"^ —

.

14. A rough circular disc can revolve freely in a horizontal plane about a vertical

axis through its centre. An equiangular spiral is traced on the disc having the

centre for pole. An insect whose mass is an 71* that of the disc crawls along the

curve starting from the point at which it cuts the edge. Show that when the insect

reaches the centre, the disc will have revolved through an angle . log ( 1 + -
) ,

2 \ nj

where a is the angle between the tangent and radius vector at any point of the

spiral.

15. A uniform circular disc moveable about its centre in its own plane (which

is horizontal) has a fine groove in it cut along a radius, and is set rotating with

an angular velocity w. A small rocket whose weight is an Ji*"" of the weight of the

disc is placed at the inner extremity of the groove and discharged ; and when it has

left the groove, the same is done with another equal rocket, and so on. Find the

angular velocity after n of these operations, and if n be indefinitely increased, show

that the limiting value of the same is ue~'.

16. A rigid body is rotating about an axis through its centre of gravity, when a

certain point of the body becomes suddenly fixed, the axis being simultaneously set

free; find the equations of the new instantaneous axis; and prove that, if it be

parallel to the originally fixed axis, the point must lie in the line represented by

the equations a-lx+ b'^my + cHz=0, {i'i-c^)- + (c^-a^)^ + {a'^-b^}- = 0] the prin-

cipal axes through the centre of gravity being taken as axes of co-ordinates, a, b, e

the radii of gyration about these lines, and I, m, n the direction-cosines of the

originally fixed axis referred to them.

17. A soUd body rotating with uniform velocity w about a fixed axis contains

a closed tubular channel of small uniform section filled with an incompressible fluid

in relative equilibrium ; if the rotation of the solid body were suddenly destroyed
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the fluid would move in the tuhe with a velocity -^— , where A is the area of the

projection of the axis of the tube on a plane perpendicular to the axis of rotation

and I is the length of the tube.

18, A gate without a latch in the form of a rectangular lamina is fitted with a

universal joint at the upper corner and at the lower corner there is a short bar

normal to the plane of the gate and projecting equally on both sides of it. As the

gate swings to either side from its stable position of rest, one or other end of the

bar becomes a fixed point. If h be the height of the gate, h tan a its length and

2j3 the angle which the bar subtends at the upper comer, show that the angular

velocity of the gate as it passes through the position of rest is impulsively dimin-

ished in the ratio -7—„ ;
—

-„^, and the time between successive impacts when the
sm^a + tan^/S

oscillations become small decreases in the same ratio, the weights of the bar and

joint being neglected.



CHAPTER VII

VIS VIVA.

The Force-function and Work

^ 332. Time and space integrals. If a particle of mass m
be projected along the axis of x with an initial velocity Fand be

acted on by a force F in the same direction, the motion is given by

the equation m -^ = F.

Integrating this with regard to t, if v be the velocity after a

time t, we have,

m{v-V) = f Fdt.
Jo

If we multiply both sides of the differential equation of the

second order by -7- and integrate, we get*
dt

'^m{v'-V) = r Fdx.

* It is seldom that Mathematicians can be found engaged in a controversy

Buch as that which raged for forty years in the last century. The object of the

dispute was to determine how the force of a body in motion was to be measured.

Up to the year 1686, the measure taken was the product of the mass of the body

into its velocity. Leibnitz, however, thought he perceived an error in the common
opinion, and undertook to show that the proper measure should be, the product of

the mass into the square of the velocity. Shortly all Europe was divided between

the rival theories. Germany took part with Leibnitz and Bernoulli; while Eng-

land, true to the old measure, combated their arguments with great success.

France was divided, an illustrious lady, the Marquise du Chatelet, being first a

warm supporter and then an opponent of Leibnitzian opinions. Holland and Italy

were in general favourable to the German philosopher. But what was most strange

in this great dispute was, that the same problem, solved by geometers of opposite

opinions, had the same solution. However the force was measured, w^hether by

the first or the second power of the velocity, the result was the same. The argu-

ments and replies advanced on both sides are briefly given in Montucla's History,

and are most interesting. For this however we have no space. The controversy

was at last closed by D'Alembert, who showed in his treatise on Dynamics that the

whole dispute was a mere question of words. When we speak, he says, of the force

of a moving body, we either attach no clear meaning to the word or we understand
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The first of these integrals shows that the change of the mo-
mentum is equal to the time-integral of the force. By applying
similar reasoning to the motion of a dynamical system we have
been led in the last chapter to the general principle enunciated in

Art. 283, and afterwards to its application to determine the changes
produced by very great forces acting for a very short time. The
second integral shows that half the change of the vis viva is equal

to the space-integral of the force. It is our object in this chapter

to extend this result also, and to apply it to the general motion of

a system of bodies.

^ 333. Vis viva. For the purposes of description it will be
convenient to give names to the two sides of this equation. Twice
the left-hand side is usually called the vis viva of the particle, a

term introduced by Leibnitz about the year 1695. Half the vis

viva is also called the kinetic energy of the particle. Many names
have been given to the right-hand side at various times. It is now
commonly called the work of the force F. When the force does

not act in the direction of the motion of its point of application the

term "work" will require a more extended definition. This we
shall discuss in the next article.

y 334. Work. Let a force F act at a point J. of a body in the

direction AB, and let us suppose the point A to move into any

other position A' very near A. If ^ be the angle the direction AB
of the force makes with the direction AA of the displacement of

the point of application, then the product F.AA .q,q^^ is called

the work done by the force. If for <^ we write the angle the

direction AB of the force makes with the direction A'A opposite

to the displacement, the product is called the work done against

the force. If we drop a perpendicular A!M on AB, the work done

by the force is also equal to the product F . AM, where AM is to be

estimated as positive when in the direction of the force. If F' be

the resolved part of F in the direction of the displacement, the

work is also equal to F' . AA!. If several forces act, we can in the

same way find the work done by each. The sum of all these is

the work done by the whole system of forces.

only the property that certain resistances can be overcome by the moving body. It

is not then by any simple considerations of merely the mass and the velocity of the

body that we must estimate this force, but by the nature of the obstacles overcome.

The greater the resistance overcome, the greater we may say is the force; provided

we do not understand by this word a pretended existence inherent in the body, but

simply use it as an abridged mode of expressmg a fact. D'Alembert then points

out that there are different kinds of obstacles and examines how their different

kinds of resistances may be used as measures. It will perhaps be sufficient to

observe, that the resistance may in some cases be more conveniently measured

by a space-integi-al and in others by a time-integral. See Montucla's ifwtorj/,

Vol. III. and WhewelFs History, Vol. ii.
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Thus defined, the work done by a force, corresponding to any
indefinitely small displacement, is the same as the virtual moment
of the force. In Statics, we are only concerned with the small

hypothetical displacements, we give the system in applying the

principle of Virtual Velocities, and this definition is therefore

sufficient. But in Dynamics the bodies are in motion, and we
must extend our definition of work to include the case of a dis-

placement of any magnitude. When the points of application of

the forces receive finite displacements we must divide the path

of each into elements. The work done in each element may be

found by the definition given above. The sum of all these is the

whole work.

It should be noticed that the work done by given forces as the

body moves from one given position to another, is independent
of the time of transit. As stated in Art. 332, the work is a space-

integral and not a time-integral.

yj 335. If two systems of forces he equivalent, the work done hy

one in any small displacement is equal to that done hy the other.

This follows at once from the principle of Virtual Velocities in

Statics. For if every force in one system be reversed in di-

rection without altering its point of application or its magnitude,

the two systems will be in equilibrium, and the sum of their

virtual moments will therefore be zero. Restoring the system of

forces to its original state, we see that the virtual moments of the

two systems are equal. If the displacements are finite the same
remark applies to each successive element of the displacement,

and therefore to the whole displacement.

V 336. We may now find an analytical expression for the work
done by a system of forces. Let (x, y, z) be the rectangular

co-ordinates of a particle of the system and let the mass of this

particle be m. Let {X, F, Z) be the accelerating forces acting

on the particle resolved parallel to the axes of co-ordinates. Then
mX, mY, mZ are the dynamical measures of the acting forces.

Let us suppose the particle to move into the position x + dxy

y + dy, z + dz; then according to the definition the work done by
the forces will be

t {mXdx + mYdy + mZdz) (1),

the summation extending to all the forces of the system. If the

bodies receive any finite displacements, the whole work will be

tmj{Xdx+ Ydy + Zdz) (2),

the limits of the integral being determined by the extreme
positions of the system.
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{/ 337. Force-function. When the forces are such as gener-
ally occur in nature, it will be proved that the summation (1) of

the last Article is a complete differential, i. e. it can be integrated

independently of any relation between the co-ordinates x, y, z. The
summation (2) can therefore be expressed as a function of the co-

ordinates of the system. When this is the case the indefinite integral

of the summation (2) is called the force-function. This name was
given to the function by Sir W. R, Hamilton and Jacobi indepen-

dently of each other.

If the force-function be called U, the work done by the forces

when the bodies move from one given position to another is the

definite integral U^— U^, where U^ and U^ are the values of Z7,

corresponding to the two given positions of the bodies. It follows

that the work is independent of the mode in which the system

moves from the first given position to the second. In other words,

the work depends on the co-ordinates of the two given extreme

'positions, and not on the co-ordinates of any intermediate posi-

tion. When the forces are such as to possess this property, i.e.

when they possess a force-function, they have been called a con-

servative system of forces. This name was given to the system

by Sir W. Thomson.

V 338. There will he a force-function, first, when the external

forces tend to fixed centres at finite distances and are functions

of the distances from those centres ; and secondly, when the forces

due to the mutual attractions or repulsions of the particles of the

system are functions of the distances between the attracting or

repelling particles.

Let m^ {r) be the action of any fixed centre of force on a

particle m distant r, estimated positive in the direction in which r

is measured, i.e. from the centre of force. Then the summation

(1) in Art. 336 is clearly tmj) (r) dr. This is a complete differ-

ential. Thus the force-function exists and is equal to SmJ<^ (f) dr.

Let mm'<l> (f) be the action between two particles m, m' whose

distance apart is r, and as before let this force be considered

positive when repulsive. Then the summation (1) becomes

tmm'(j>{r)dr. The force-function therefore exists, and is equal

to '^mm'J^ (r) dr.

If the law of attraction be the inverse square of the distance,

^ (^) = _ j_ and the integral is - . Thus the force-function differs

from the Potential by a constant quantity.

339. It is clear that there is nothing in the definition of the

force -function to compel us to use Cartesian Co-ordinates. If
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P, Q, &c. be forces acting on a particle, Pdp, Qdq, &c. their virtual

moments, m the mass of the particle, then the force-function is

[/= 2m [{Pdp + Qdq + &c.),

the summation extending to all the forces of the system.

Ex. 1. If (/), 4>, z) be the cylindrical or semi-polar co-ordinates of the particle

m; P, Q, Z the resolved parts of the forces respectively along and perpendicular to

p and along z, prove that dU=2,ni{Pdp+ Qpd<p+ Zdz).

Ex. 2. If (r, 0, <p) be the polar co-ordinates of the particle m; P, Q, R the

resolved parts of the forces respectively along the radius vector, perpendicular to it

in the plane of and perpendicular to that plane, prove that

dU=^m(Pdr+Qrd0+RraxL0d<f>).

Ex. 3. If {x, y, z) be the obUque Cartesian co-ordinates of m; X, Y, Z the

components along the axes, prove that

dU='I,m{X(dx+ vdy + fidz) + Y (vdx + dy + \dz) +Z {fxdx + \dy+ dz)],

where (X, /*, v) are the cosines of the angles between the axes yz, zx, xy respectively.

This example is due to Poinsot.

v<340. If a system receive any small displacement di^ parallel to

a given straight line and an angular displacement d^ round thai,

line, then the partial differential coefficients -r- and ^ represent

respectively the resolved part of all the forces along the line and the

moment of the forces about it.

Since dU is the sum of the virtual moments of all the forces

due to any displacement, it is independent of any particular co-

ordinate axes. Let the straight line along which ds is measured
be taken as the axis of z. Taking the same notation as before,

dU= 2m (Xdx + Ydy + Zdz).

But dx = Q, dy = 0, and dz = ds, hence we have

dU=ds .XmZ; :. -T- = ^mZ.
ds

Here dU means the change produced in U by the single dis-

placement of the system, taken as one body, parallel to the given

straight line, through a space ds.

Again, the moment of all the forces about the axis of z is

Xm {xY— yX), but dx = —ydO, dy = xdO, and dz = 0. Hence the

above moment
^ Ydy + Xdxi-Zdz dU

= ^^ Te =dd'

Here dU i^ the change produced in U by the single rotation

of the system, taken as one body, round the given axis through
an angle dO.
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v/ 341. As considerable use will be made of the force-function,

the student will find it advantageous to acquire a facility in
writing down its form. The following examples have therefore

been chosen as likely to be the most useful.

{/ 342, Work done by gravity. A system of bodies falls
under the action of gravity. If M. be the whole mass, h the space
descended by the centre of gravity of the whole system, the work
done by gravity is Mgh. See Art. 140.

Let the axis of z be vertical and let the positive direction be downwards. Then
in the summation (1) of Art. 336, Z= 0, r=0 and Z^^g. Hence dU=I,m(tdz. If z

be the depth of the centre of gravity below the plane of xy, and C be any constant,

we find U=Mgz+ C. Taking this between limits- we easily obtain the result given.

Units of work. The theoretical unit of work is the work
done by a dynamical unit of force acting through a unit of space.

We may use the result of this example to supply a practical unit.

The work required to raise the centre of gravity of a given mass
a given height at a given place may be taken as the unit of work.

English engineers use a pound for the mass and a foot for the

height, and the unit is then called 2k foot-pound. The term Horse-

power is used to express the work done per unit of time. The
unit of horse-power is usually taken to be 33000 foot-pounds per

minute. The duty of a steam-engine is the actual work done by
the consumption of a unit quantity, usually a bushel, of coal.

Ex. 1. A force communicates to a particle whose mass is equal to that of a

cubic foot of water a velocity of one foot per minute. Find the work done in foot-

pounds.

Ex. 2. Prove that the amount of work required to raise to the surface of the earth

the homogeneous contents of a very small conical cavity whose vertex is at the

centre of the earth, is equal to that which would be expended in raising the whole

mass of the contents, through a space equal to one-fifth of the earth's radius from

the surface, supposing the force of gravity to remain constant. [Coll. Exam.]

V 343. Work of an elastic string. Ex. If the length of an

elastic string or rod which is uniformly stretched be altered the

work done by the tension is the product of the compression of the

length into the aj'ithmetic mean of the initial and final tensions.

Let the length be altered from r to /. Let p be any length between these two,

let I be the unstretched length, and let E be the constant of elasticity. The tension

is T=E ^^ and acts opposite to the direction in which p is measured. The

work done while p becomes p + dp\s therefore equal to - Tdp. If we integrate this

E
{tomp=r to p = r' we find that the work required is -gi {(r'-i)''-(r-i)2}. This

leads at once to the result given.

If a string becomes slack, the tension is supposed to vanish, and no work is

done until the string becomes again tight. In applying the rale, the compression is
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the difference between the two terminal lengths if the string be tight in both,

whether it had been slack or not during the various changes of length which may

have occurred during the process. If the string be slack in either terminal state we

must in calculating the compression suppose the string to have its mistretched

length in that terminal state.

In the case of a rod the tension becomes negative when the rod is compressed,

and the rule wiU apply so long as the rod remains straight, and we can suppose

Hooke's law to be true.

If the string is not straight but is uniformly stretched over a surface or in a

fine tube, the same rule to find the work is still true. To prove this, we divide the

string into elements, each of which may be considered as straight. When the

whole string is now uniformly stretched the work done is the mean of the tensions

into the sum of the contractions of all the elements. This last is clearly the con-

traction of the whole string.

If the surface be fixed the string can contract only by one, at least, of the

extremities moving, and in this case the work is done at that extremity.

If the surface move, and the extremities of the string be fixed in space, the work

is transferred to the surface by means of the reactions. If the string have no

effective forces these reactions are in equilibrium with the tensions at the points

A, B where the string leaves the surface. Now let the surface receive any small

displacement. By the principle of virtual velocities the work done by the reactions

on the surface is equal to that done by the two equal tensions at the points A, B.

But this work is the instantaneous tension into the contraction of the string, i.e. it

is - Tdp. If the surface receive a finite displacement, the work done is the integral

of this expression, and the rule is of course the same as before.

Whether the string have mass or not, we may consider each separate element of

it as one of the moving bodies whose motion will enter into the equation of vis

viva. The work done by the contraction of all the elements is to be regarded as

distributed over all the bodies. The work done by the equal and opposite reactions

between the string and surface will then be zero.

^ 344. Work of collecting a body. Ex. 1. If tw, m be the

masses of two particles attracting each other with a force —j-

where r is the distance between them, show that the work done
when they have moved from an infinite distance apart to a distance

r is . This follows from Art. 338.
r

Ex. 2. Let two finite masses M, M' attract each other and
occupy given positions. Prove that the work of bringing the par-

ticles of one from infinite distances apart into their given positions

under the attraction of the second, supposed fixed in its given
position is the same as that of bringing the particles of the second
from infinity into their positions under the attraction of the first.

Prove also that this work may he found by taking both bodies in

their final positions and multiplying the mass of each element of

t
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one hody hy the potential of the other at that element and then inte-
grating throughout the volume of the one hody.

" This integral is sometimes called the mutual work or the
mutual potential of the two bodies.

Let there be two sets of attracting particles which we may represent by
m^,m.2,&c., mrl, m.^, Ac, and let the particles of each set attract the particles of

the other set but not the particles of its own set. Suppose the particles m^, m„, &c.

to occupy any given positions, and let one particle m' of the second set be brought

from an infinite distance to any given position, say to a position at distances

»'i , Tz, &c. from the particles mx , mg , &c. The work done is m' (
— +— + &c. ) = m'V,

where V is the potential of the attracting masses at the given position of m'.

Let us now bring in succession all the particles m^', m^', &c. from infinite

distances to their given final positions under the attraction solely of the masses

mi, m^, &o. The whole work is 2m'F, which may also be written in the sym-

metrical form 2—- where r is the distance between the particles m, m', and the

S implies summation for every combination of each particle of one set with each

particle of the other. This symmetrical form proves the first part of the pro-

position.

These particles may be elementary, and in that case we see that the work

of collecting any mass M' into a given position under the attraction of a mass M
placed in a given position is equal to / Vdm', where V is the potential of the mass

M at the final position of dm' and the integration extends over the whole mass

of If'.

Ex. 3. If the particles composing any mass were separated

from each other, work might be obtained from their mutual at-

tractions by allowing the particles to approach each other. The

work thus obtained is greatest when the particles are collected

together from infinite distances. If dv be an element of volume

of a soHd mass attracting according to the law of nature, p the

density of the element, V the potential of the solid mass at the

element dv, prove that the work performed in collecting the par-...If
tides composing the massfrom infinite distances is ^ I Vpdv.

The problem of determining how much work can be obtained

from the bodies forming the solar system by allowing them to

consolidate into a solid mass has been considered by several philo-

sophers. Sir W. Thomson has calculated that the potential energy

or the work which can be obtained from the existing solar system

is 380,000 X 10'' foot-pounds. Edin. Trans. 1854.

Let m^, m^, Ms, &c. be the masses of any particles, r^j, r^s, Ac. the distances

between the masses m^,m^; m^, m^; &c. in any arrangement. Then as before

the work done in collecting them from infinite distances is U= -y- -t- -^ + <Kc.,
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which may be written C7 = S — . Now if V^ be the potential at the particle mj of

all the particles except % in the given arrangement, Fj = — H

—

- + ... If Fj , Fj , &c.
'"12 ''13

have similar meanings we may write the work in the form

[7=1 (Fimi + F2m2+ ...) =
I
SFm.

In finding the potential of any solid mass at any point P we may omit the

matter within any indefinitely small element enclosing P if its density be finite.

For, since " potential is mass divided by distance," and the mass varies as the cube

of the linear dimensions, it follows that the potential of similar figures at points

similarly situated must vary as the square of the linear dimensions and must vanish

when the mass becomes elementary and the distance indefinitely small. In

applying, therefore, the form U=-'ZVm to a solid body we may write pdv for m and

take F to be the potential of the whole mass at the element dv.

Ex. 4. The particles composing a homogeneous sphere of mass M and radius

r were originally at infinite distances from each other. Prove that the work done

3 HP
by their mutual attractions is ^ —

.

"' or
Ex. 5. The particles of a homogeneous ellipsoid whose mass is M and semiaxes

a, b, c are collected from infinite distances, show that the work done is

3 /•" d\

1.10 jo Ji^^+W^fi^+Wif+^'

Ex. 6. The work of collecting the particles of two masses
which are wholly external to each other from infinite distances is

the sum of the works of collecting each separately plus their

mutual potential.

If one mass be wholly internal to the other, prove that the
work of collecting the difference is the sum of the works of col-

lecting each separately minus their mutual potential.

If the first proposition be not evident, let M, M' be the masses already collected,

and let us bring an additional particle from £in infinite distance to the mass M.
The work on this particle is evidently that due to the attraction of M together with

that due to the attraction of M'. The first is an addition to the work of collecting

M, and the second is an addition to the mutual potential ofM and M'.

From the first proposition we deduce by transposition that the work of collecting

M is equal to the work of collecting {M+M') minus the work of collecting M' minus

the mutual potential of M and M'. Now the mutual potential ofM and M' is equal

to the mutual potential of {M+M') and M' minus twice the work of collecting M'.

The second proposition follows at once.

Ex. 7. A quantity of homogeneous matter is bounded by two spheres which do

not intersect, one sphere being wholly within the other. The radii of the spheres

are o and 6, and the distance between the centres is c. Show that the work of

collecting this matter from infinite distances is ^f \% - ^ 1- 1- — 1

.

3(6210 6)

(i
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•^ 345. Work of a gaseous pressure. Ex. 1. An envelope
of any shape and whose volume is v, contains gas at a uniform
pressure p. Assuming that the pressure of the gas per unit of
area is some function of the volume occupied by it, prove that the
work done by the pressures when the volume increases from v = a, to

\ =h is I pd^

on da and p I dadn is the work done over the whQle area. But dadn is the volume

Divide the surface into elementary areas each equal to da; then pda is the

pressure on da. When the volume has increased to i; + dv, let any element da take

the position da' and let dn be the length of the perpendicular drawn from the

central point of da' on the plane of da, then pdadn is the work done by the pressure

pja

of the oblique cylinder whose base is da and opposite face da'; so that / dadn is the

whole increment of volume. The whole work done when the volume increases by

dv is therefore pdv.

Ex. 2. A spherical envelope of radius a contains gas at pressure P, assuming

that the pressure of the gas per unit of area is inversely proportional to the volume

occupied by it, prove that the work reqiiired to compress the envelope into a sphere

of radius b is iwa^P log ~ .

Ex. 3. An envelope of any shape contains gas and the shape is altered without

altering the volume. Show that the work done over the whole surface is zero.

V 346. Work of an Impulse. Ex. 1. An impulsive force acts

on a body in a fixed direction in space. Show that if F be the

whole momentum communicated by the force; u^, u^ the velo-

cities of the point of application resolved in the direction of the

force, just before and just after the impulse, then the work done by

the impulse is -°—^—^ F.

This result is given in Thomson and Tail's Natural Philosophy.

Let us regard the impulse as the limit of a finite force acting in the fixed direc-

tion for a very short time T. Let the direction of the axis of x be taken parallel to

the fixed direction and let A' be the whole momentum communicated during a time

t measured from the commencement of the impulse. Here t is any time less than

T and X varies from zero to F as t varies from to T. Also, since X is the whole

momentum up to the time t, ^ is the moving force on the body at the time t. Let

u be the resolved velocity of the point of application at the time t, then «„ and k,

are the values of u when t=0 and t = T. Since udt is the space described in the

time dt by the point of application of the force -^ , the work done in the time T is

~- udt. This is the same as / udX. Now, when the time t is indefinitely

'^^ Jo
small, the velocity u is known by Art. 313 to be a linear function of X, so that we

may write u = u^ + LX, where L is a constant depending on the nature of the body.

R. D^ 1^
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Substituting this value of w, we have the work equal to
(

{Uq+ LX)dX=V(,F+L-^ .

But Wj= Wo + LF. Eliminating L we find that the work = - (mj

+

v^) F.

Ex. 2. Find the work done by an impulse whose direction is not necessarily

the same during the indefinitely short duration of the force.

Let X, Y, Z be the components of the whole momentum given to the body in

any time t measured from the commencement of the impulse. Let m, v, w be the

resolved velocities of the point of application at the time t. Then, by the same

reasoning as before, the work done= / (-j-u+-^v+— tc\dt. But by Art. 31-i

rr, . . , n : , „ dE dE dE , ^ .

when T is indefimtely small u=Uq+-,^,, v=VQ+ -jTy, v>= Wq+ ^—, where E is

a known quadratic fnnction of {X, Y, Z) depending on the nature of the body.

Substituting we have-

rs ff<^E,^^ dE „. dE ,\
work=«o.\i + roli + Wo^i+ l\^^,dA + ^.dl+— rfZ

j

= M(,A'l + ro^i +w^i + E,

,

where X^, Y-^, Zj, E^ are the values of A, Y, Z, E when t = T.

We may eliminate the form of the body and express the work in terms of

the resolved velocities of the point of application just after the tei-mination of the

impulse. Since E^ is a homogeneous quadratic function of Aj, I'j, Z^, we have

2Ei=g A, + ^^ Y, +§ ^1 = (", - "o) A'l + {V, - r„) r^ + (,r, - v^,) Z.

Substituting we find work=-»J^i A'^ + '-^tll r^ + ^tlEl z^.
a a A

\/ 817. "Work of a membrane. A spherical membrane is stretched into a sphere

whose radius is r. Let Tds be the tension across any elementary arc ds when the

membrane is stretched, where T is a known function of r depending on the nature

of the material. Then the work done by the tensions, when the membrane is

/ft

stretched into a sphere of radius 6 is Stt | Trdr.
/>

Let the centre of the sphere be taken as origin and let us refer any point on the

sphere to iiolar co-ordinates (r, 0, <f>).
The adjacent sides of an elementary area

are rd9, r sin 6d(p. The tensions across rd9 and the opposite side are each equal

to Trdd. "When the radius r increases by dr, the distance between these sides

is increased by dr sindd^, this being the differential of an adjacent side. Hence

the work done by these tensions is Trd9 .dr sin 6 d(p. Let us now consider the

remaining two sides of the element. The tensions across r sin^d^ and the opposite

side are each equal to Tr sindd^. When the radius r increases by dr, the distance

between these sides is increased by drdff. Hence the work done by these tensions

is Tr sin 0d<l).drdd. The work done by the tensions on the four sides of the

element is therefore 2Trdr sin0d6d(p. Integrating this from ^= to 2jr, ^= to ir,

we find that the work done over the whole sphere when the radius increases by

dr is QirTrdr.

If the membrane be such that we may apply Hooke's law to the tension T,

T — Cl

we have T=E , where a is the natural radhis of the membrane and E is the



VARIOUS KINDS OF WORK. 275

> oefficient of elasticity. Substituting this value of T we find that the work done
AT? -

I
\

by the tensions when the radius increases from a to 6 is - ~ (b - a)^ {2b + a). ' ^ -'"

If we assume that for a soap-bubble T is constant, we find that the work done

when the radius increases from o to 6 is 4tT (6* - o').

If we suppose the spherical membrane to be slowly stretched by filling it with

gas at a pressure f, we have by a theorem in Hydrostatics pr=2T. In this case

f 4
the work required has been shown to be jpdv, and since v=-irr^ this leads to the

same result as before.

(/a48. Work of a couple. Ex. A given couple is moved
in its own plane from one position to -another; show that the

work is the product of its moment by the angle turned round.

Any displacement of a couple is equivalent to a rotation round one extremity

of its arm and a transference of the whole couple parallel to itself. The work

done by the two forces during the transference is clearly zero. We need therefore

only consider the work done during the rotation.

Let F be the force, a the length of the arm, and let the couple be turned round

one extremity A of its arm through an angle dO. The force at A does no work,

the work done by the other force is F.adO. Integrating this we have the work

done by the couple when it turns through any finite angle.

349. Work of Bending a rod. Ex. 1. A rod originally

straight is bent in one plane. If L be the stress couple at any

point, p the radius of curvature, it is known both by experiment

and theory that L-=— where ^ is a constant depending on the

nature of the material, and the form of a section of the rod.

Assuming this, prove (1) When the rod is lent into a given form so

that p is a known function of 5 (whether the forces are known or

not) the work is ^ i —^ ds, (2) when the rod is bent by known forces

so that i is a known function of s (whether the form of the rod is

known or not) the work is\\-^ds. The limits of integration are

from one end of the rod to the other.

Let PQ be any element of the rod and let its length be ds. As PQ is being bent,

let t/- be the indefinitely small angle between the tangents at its extremities, then

the stress couple ^^E~. As i/- increases from to — the work done ia ^jyf'df,

1 fE
which is the same as^ . The work done on the whole rod is therefore ^ f 'i'^'

2p' ^ J H

Ex. 2. A uniform heavy rod of length I and weight w is supported at its two

extremities so as to be horizontal. Show the work done by gravity m bending

'^^'2iOE
18—2
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Conservation of Vis Viva and Energy.

350. Def. The Vis Viva of a particle is the product of its

mass into the square of its velocity.

The principle of vis viva. If a system be in motion under

the action of finite forces, and if the geometrical relations of the

parts of the system he expressed by equations which do not con-

tain the time explicitly, the change in the vis viva of the system in

passing from any one position to any other is equal to twice the

corresponding worh done by the forces.

In determining the force-function all forces may be omitted

which would not appear in the equation of Virtual Velocities.

Let X, y,. z be the co-ordinates of any particle m, and let X, Y,

Z be the resolved parts in the directions of the axes of the im-

pressed accelerating forces acting on the particle.

The effective forces acting on the particle m at any time t are

d^x d^y d^z

'"W "'W "'5?- 1
If the effective forces on all the particles be reversed, they will be

in equilibrium with the whole group of impressed forces by Art. 67.

Hence, bv the principle of virtual velocities,

where hx, By, Bz are any small arbitrary displacements of the par-

ticle m consistent with the geometrical relations at the time t

Now if the geometrical relations be expressed by equations

which do not contain the time explicitly, the geometrical relations

which hold at the time t will hold throughout the time Bt; and,

therefore, we can take the arbitrary displacements Bx, By, Bz to be

respectively equal to the actual displacements -j- Bt, -^ Bt, -r. Bt
at at at

of the particle in the time Bt.

Making this substitutian, the equation becomes

^ fd^xdx ,
d^y dy

,
d^z dz\ _, (^dx ^^dy r,dz\

^"'[de dt + d? di ^di' dtj
=-"" [^

S-^^
i+^dt)

Integrating, we get

where is a constant to be determined by the initial conditions

of motion.
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Let V and v be the velocities of the particle m at the times t

and t'. Also let U^, C^ be the values of the force-function for the
system in the two positions which it has at the times t and t'

Then

851. The following illustration, taken from Poisson, may show
more clearly why it is necessary that the geometrical relations
should not contain the time explicitly. Let, for example,

4>{x, y, z, t) = Q (1)

be any geometrical relation connecting the co-ordinates of the
particle m. This may be regarded as the equation to a movin*^
surface on which the particle is constrained to rest. The quanti*
ties hx. By, Bz are the projections on the axes of any arbitrary
displacement of the particle m consistent with the geometrical
relations which hold at the time t They must therefore satisfy

the equation

ax ay "^ dz

The quantities -j- Bt, ^ Bt, -j- Bt are the projections on the

axes of the displacement of the particle due to its motion in tlie

time Bt. They must therefore satisfy the equation

dd> dx 5,, _
d4> dy ^ d<h dz ^^ d(b ^

dx dt dy dt dz dt dt

Hence, unless -^ is zero throughout the whole motion we can-

not take Bx, By, Bz to be respectively equal to -^ Bt, -~- Bt, -5- Bt.
j± dt dt dt

The equation -^ = expresses the condition that the geometrical

equation (1) should not contain the time explicitly.

352. The great advantage of this principle is that it gives at

once a relation between the velocities of the bodies considered

and the variables or co-ordinates which determine their positions

in space, so that when, from the nature of the problem, the posi-

tion of all the bodies may be made to depend on one variable,

the equation of vis viva is sufficient to determine the motion. In

general the principle of vis viva will give a first integral of the

equations of motion of the second order. If, at the same time,

some of the other principles enunciated in Art. 282 may be ap-

plied to the bodies under consideration, so that the whole number
of equations thus obtained is equal to the number of independent

co-ordinates of the system, it becomes unnecessary to write down
any equations of motion of the second ordei\ See Art. 143.
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353. The principle of Vis Viva was first used by Huygliens

in his determination of the centre of oscillation of a body, but in

a form different from that now used. See the note to page 75.

The principle was extended by John Bernoulli and applied by
his son, Daniel Bernoulli, to the solution of a great variety of

problems, such as the motion of fluids in vases, and the motion of

rigid bodies under certain given conditions. See Montucla, Histoire

des Mathematiques, Tome ill.

354. Examples of tlie principle. If a system be under the action of no

external forces, we have X—0, Y=0, Z— 0, and hence the vis viva of the system is

constant.

If, however, the mutual reactions between the particles of the system are such

as would appear in the equation of virtual moments, then the vis viva of the system

will not be constant. Thus, even if the solar system were not acted on by any

external forces, yet its vis viva would not be constant. For the mutual attractions

between the several planets are reactions between particles whose distances do not

remain the same, and hence the sum of the virtual moments will not be zero.

Again, if the earth be regarded as a body rotating about an axis and slowly con-

tracting from loss of heat in course of time, the vis viva will not be constant, for

the same reason as before. The increase of angular velocity produced by this

contraction can be easily found by the conservation of areas. See Art. 300.

855. Let gravity be the only force acting on the system. Let the axis of 2 be

vertical, then we have Z=0, r=0, Z= -g. Hence the equation of vis viva becomes

Smi;'2 - 2mt;2= - 2Mg (^ - z).

Thus the vis viva of the system depends only on the altitude of the centre of

gravity. If any horizontal plane be drawn, the vis ^iva of the system is the same

whenever the centre of gravity passes through the plane. See Art. 142.

356. Ex. If a system in motion pass through a position of equilibrium, i.e. a

position in which it would remain in equilibrium under the action of the forces if

placed at rest, prove that the vis viva of the system is either a maximum or a

minimum. Courtivron's Theorem, M^m. de I'Acad. 1748 and 1749.

357. The equation of Virtual Velocities in Statics is known
to contain in one formula all the conditions of equilibrium. In

the same way the general equation

may be made to give all the equations of motions by properly

choosing the arbitrary displacements Bx, By, Bz. In Article 350
we made one choice of these displacements and thus obtained an
equation in an integrable form.

If we give the whole system a displacement parallel to the

axis of z we have Bx= 0, Sy = 0, and Bz is arbitrary. The equa-

!
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tion then becomes tm^ = '^mZ, which represents any one of the

three first general equations of motion in Art. 71.

If we give the whole system a displacement round the axis
of z through an angle hd, we have hx = - yBd, By = xoO, Bz = 0.

The equation then becomes tm(x~-y-~\ ='Em {xY - t/X),

which represents any one of the three last general equations of
motion in Art. 71.

358. Potential and kinetic energy*. Suppose a weight mr/

to be placed at any height h above the surface of the earth. As
it falls through a height z, the force of gravity does work which is

measured by onffz. The weight has acquired a velocity v, half of

its vis viva is ^mv^ which is known to be equal to vigz. If the
weight fall through the remainder of the height h, gravity may be
made to do more work measured by mg {h — z). When the weight
has reached the ground, it has fallen as far as the circumstances of

the case permit, and no more work can be done by gravity until

the weight has been lifted up again. Throughout the motion we sec

that when the weight has descended any space z, half its vis viva,

together with the work that can be done durino^ the rest of the

descent is constant and equal to the Avork done by gravity during

the whole descent h.

If we complicate the motion by making the weight work

some machine during its descent, the same theorem is still true.

By the principle of vis viva, proved in Art. 350, half the vis viva

of the particle, when it has descended any space z, is equal to the

work mgz which has been done by gravity during this descent,

diminished by the work done on the machine. Hence, as before,

half the vis viva together with the difference between the work

done by gravity and that done on the machine during the re-

mainder of the descent is constant and equal to the excess of the

work done by gravity over that done on the machine during tlic

whole descent.

Let us now extend this principle to the general case of a

system of bodies acted on by any conservative system of forces.

359. Let us select some position of a moving system of bodies

as a position of reference. This may be an actual final position

* Coriolis, Helmholtz and others have suggested that it would be more con-

venient if the Vis Viva were defined to be half the sum of the products of the

masses into the squares of the velocities. See Phil. Trans. 1854, p. 89. But thi;^

change in the meaning of a term so widely established in Europe would be very

likely to cause some confusion. It seems better for the present to use another

name, such as kinetic energy.
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passed through by the system in its motion, or any position

which it may be convenient to choose, into which the system

could be moved. Suppose the system to start from some position

which we may call A, and at the time t, to occupy some position P.

Then at the time t, half the vis viva generated is equal to the

work done from A to P. Hence half the vis viva at F together

with the work which can be done from P to the position of refer-

ence is constant for all positions of P.

To express this, the word energy has been used. Half the vis

viva is called the kinetic energy of the system. The work which

the forces can do as the system is moved from its existing position

to the position of reference is called the potential energy of the

system. The sum of the kinetic and potential energies is called

the energy of the system. The principle of the conservation of

energy may be thus enunciated :

—

When a system moves inidei- any conservative forces, tlie sum of
the kinetic and potential energies is constant throughout the motion.

360. The distinction between work done and potential energy

may be analytically stated thus. The force-function has been

defined in Art. 337 to be the indefinite integral of the virtual

moments of the forces. As the system moves the work done is

the definite integral taken with its lower limit determined by
some standard position of reference, which we may call G and its

upper limit determined by the instantaneous position of the

system. The potential energy is the definite integral taken with

its upper limit determined by some fixed position of reference

which we may call D, and its lower limit determined by the in-

stantaneous position of the system. If the two fixed positions of

reference which we have distinguished by the letters G and D be

identical, the work integral is the same as the potential integral

with its sign changed. But this is not generally the case; the

positions of reference are chosen each to suit the particular integral

in connection with which it is used.

361. Examples of Potential Energy. Ex. 1. A 'particle describes an ellipse

freely about a centre offorce in its centre. Find the whole energy of its motion.

Let m be the mass of the particle, r its distance at any time from the centre,

nr the accelerating force on the particle. If coincidence of the particle with the

centre of force be taken as the position of reference, the potential energy by Art. 360

f" 1
is= / {-mii.r)dr—-m(ji.r'^. If / be the semi-conjugate of r, the velocity of the

particle is Jur' and the kinetic energy is therefore Jm/tr'^ As the particle de-

scribes its ellipse round the centre of force, the sum of the potential and kinetic

energies is equal to ^ mfi ((t^ + 6-) where a and b are the semi-axes of the ellipse.

Ex. 2. A particle describes an ellipse freely about a centre of force in the

centre. Show that the mean kinetic energy during a complete revolution is equal

to the mean potential energy; the means being taken with regard to time.
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Ex. 3. If in the last example the means be taken with regard to the angle

described round the centre, the difference of the means is ^mfi [a-b)^.

Ex. 4. A mass M of fluid is running round a circular channel of radius a with

velocity u, another equal mass of fluid is running round a channel of radius b with

velocity v, the radius of one channel is made to increase and the other to decrease

until each has the original value of the other, show that the work required to pro-

duce the change ^^ » i~2~ Ti) (^^ ~ "^) ^' [^^ath. Tripos, 1866.]

362. liist of Forces to be omitted. In applying the principle of vis viva to

any actual cases, it will be important to know beforehand what forces and internal

reactions may be disregarded in forming the equation. The general rule is that aU

forces may be neglected which do not appear in the equation of Virtual Velocities.

These forces may be enumerated as follows

:

A. Those reactions whose virtual velocities are zero.

1. Any force whose line of action passes through an instantaneous axis; as

rolling friction, but not sliding friction or the resistance of any medium.

2. Any force whose line of action is perpendicular to the direction of motion

of the point of application ; as the reaction of a smooth fixed surface, but not that

of a moving surface.

B. Those reactions whose virtual velocities are not zero and which therefore

would enter into the equation, but which disappear when joined to other re-

actions.

1. The reaction between two particles whose distance apart remains the same

;

as the tension of an inextensible string, but not that of an elastic string.

2. The reaction between two rigid bodies, parts of the same system, which roll

on each other. It is necessary- however to include both these bodies in the same

equation of vis viva.

C. All tensions which act along inextensible strings, even though the strings

are bent by passing through smooth fixed rings.

For let a string whose tension is T connect the particles m, m', and pass through

a ring distant respectively r, r' from the particles. The virtual velocity is clearly

T5r+ T5r', because the tension acts along the string. But since the string is

inextensible Sr+ d/^O; therefore the virtual velocity is zero.

363. Expressions for the vis viva of a rigid body in

motion. If a body move in any manner its vis viva at amj instant^

is equal to the vis viva of the whole mass collected at its centre of

gravity, together ivith the vis viva round the centre of gravity con-

sidered as a fixed point : or

The vis viva of a body = vis viva due to translation

+ vis viva dv£ to rotation.

Let X, y, z be the co-ordinates of a particle whose mass is m
and velocity v, and let x, y, z be the co-ordinates of the centre of

gravity G of the body. Let a; = ic + ^, 2/ = 2/ + '?. -2^ = ^ + ^ Then

by a property of the centre of gravity tm^ = 0, Xmrj = 0, Zm^- 0.

Hence Sm§ = 0, Im ^ = 0, Sm |^= 0. Now the vis viva of a
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Substituting for x, y, z, this becomes

All the terras in the last line vanish as they should, by-

Art. 14. The first terra in the first line is the vis viva of the

whole mass Xm, collected at the centre of gravity. The second

term is the vis viva due to rotation round the centre of gravity.

This expression for the vis viva may be put into a raore con-

venient shape.

364. First. Let the motion be in two dimensions. See Art. 139.

Let V be the velocity of the centre of gravity, r, its polar co-

ordinates referred to any origin in the plane of raotion. Let i\ be
the distance of any particle whose mass is m frora the centre of

gravity, and let v^ be its velocity relatively to the centre of

gravity. Let o) be the angular velocity of the whole body about
the centre of gravity, and Mk^ its moment of inertia about the
same point.

The vis viva of the whole mass collected at G is Mv^, which
may by the ])ifferential Calculus be put into either of the forms—l(S)^(D]=-l©'-^(f)'

The vis viva about G is SrwVj*. But since the body is turning
about Gf we have v^ = r^(o. Hence Xmv^ = w* . 'Zinr^ = o>' . Mk*.

The whole vis viva of the body is therefore

tmv' = Mv' + MkW.
If the body be turning about an instantaneous axis, whose

distance from the centre of gravity is r, we have v = rto. Hence

Xmv' = 3Ia>* (»•" + k'} = Mk'W,
where Mk'^ is the moment of inertia about the instantaneous axis.

Secondly. Let the body be in motion in space of three dimen-
sions.

Let V be the velocity of G^ ; r,0,^ its polar co-ordinates re-

ferred to any origin. Let w^, ©„, w, be the angular velocities

of the body about any three axes at right angles meeting in G,
and let A, B, G he the moments of inertia of the body about
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the axes. Let ^, 77, ^ be the co-ordinates of a particle vi referred
to these axes.

The vis viva of the whole mass collected at G is j\I ?, which
may be put equal to

-©^(f)^©]o-{(i)'---nfy---'e)].
according as we wish to use Cartesian or Polar co-ordinates.

The vis viva due to the motion about G is

It^"^"^'
'^''^'

dt^"^'^' '""^'
It
" ^''^ ~ '^'^-

Substituting these values, we get, since A = Xin irf + t'^)

Xmv^' = Aco,' + Bcoy' + Cco^^

- 2 {tm^T)) w^Wy - 2 {XiiiT]^) WyW^-^L ^mt,^) w.w^.

We may find the vis viva of the motion about G in another manner. Let fi be

the angular velocity about the instantaneous axis, I the moment of inertia about

it. The vis viva is then clearly 70-. Now I is found in Art. 15, and in our case

Wi= na, W2= ft/3, W3— 07 following the notation of that article. Eliminating a, /3, 7
we get the same result as before.

If the axes of co-ordinates be the principal axes at G, this re-

duces to

If the body be turning about a point 0, whose position is

fixed for the moment, the vis viva may be proved in the same

way to be
tmv''=A'w:+B(o^-^ C'(o^,

where A', B' , C are the principal moments of inertia at the

point 0, and o>^, co^, a, are the angular velocities of the body

about the principal axes at 0.

365. Examples of via viva. Ex. 1. A rigid body of mass .1/ is moving in

space in any manner and its position is determined by the co-ordinates of its

centre of gravity and the angles 0, <p, \p which the principal axes at the centre of

gravity make with some fixed axes in the manner explained in Art. 25G. Show

that its vis viva is given by

2r= JI (x'2+ y'- + 2'2) + C((p' + f cos $)-+ {A sin2 ,p + D cos^ 4>) t^

+ sm'^e[A co?r-<p + B sin'^<p)f'- + 2{D-A) sin^ sin^cos^^'f,

where accents denote differential cocflicients with regard to the time.
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Show also that when two of the principal moments A and B are equal, this

takes the simpler form

2r=lf («'2 + i/'2 + 2'2) + C(^' + vJ'' cos^)2+J (5'2+ sin20f2).

This result will he often found useful.

Ex. 2. A hody moving freely about a fixed point is expanding under the in-

fluence of heat so that in structure and form the body is always similar to itself.

If the law of expansion be that the distance between any two particles at the

temperatme Q is equal to their distance at temperature zero multiplied by /(^),

show that the vis viva of the body =^w^2+ Bw„2+ Cw/+ | (^ +£ + C) /^li^^^V,

where A, B, C are the principal moments at the fixed point.

Ex. 3. A body is moving about a fixed point and its vis viva is given by the

equation

2T=Aux^ +Bw/ + Cw^- - 2D«j,w, - 2£w,Wx - 2Fag<ag.

Show that the angular momenta about the axes are ^— ,
~— , -r— .

rfwj. auy dUg

Let the body be moving freely and let 2Tq be the vis viva of translation. Prove

that if X, y, z be the co-ordinates of the centre of gravity referred to any rectangular

axes fixed or moving about a fixed point, and if accents denote diSerential coefficients

with regard to the time, then the linear momenta parallel to the axes will be

dTo dTo dTo

dx' ' dy' ' dz'
'

Thus the vis viva, like the force-function, is a scalar function whose differential

coefficients are the components of vectors. See Arts. 262 and 340. In the case of

the semi vis viva, these are the resultant linear momentum and angular momentum
round the centre of gravity.

'—J 3G6. FroUeins on tbe Frlneiple of vis viva. Ex. 1. A circular wire can

turn freely about a vertical diameter as a fixed axis, and a bead can slide freely

along it under the action of gravity. The wlwle system being set in rotation about

the vertical axis, find the subsequent motion.

Let 31 and m be the masses of the wire and bead, w their common angular

velocity about the vertical. Let a be the radius of the wire, Mi^ its moment of

inertia about the diameter. Let the centre of the wire be the origin, and let the

axis of y be measured vertically downwards. Let 6 be the angle the radius drawn

from the centre of the wire to the bead makes with the axis of y.

It is evident, since gravity acts vertically and since all the reactions at the fixed

axis must pass through the axis, that the moment of all the forces about the vertical

diameter is zero. Hence, taking moments about the vertical, we have

JbfFw+ ma^ sin^ e<a=h.

And by the principle of vis viva.

iZPw2 +m\a^(^\ +a^sm^e(^\ = C+ 2mga cos e

quations will suffice for the determination of -

them, we get -jyTj- „ . ,.. + ma^{-rA = C + 2nJ^a cos 0.

These two equations will suffice for the determination of — and w. Solving
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This equation cannot be integrated, and hence 9 cannot be found m terms of t

To determine the constants h and C we must recur to the initial conditions of

motion. Supposing that initially e= ir, and 1^ = and a,=a, then h = m'^a and

C=2mga + J/Fa^. See Art. 352.

Ex. 2. A lamina of any form rolls on a perfectly rough straight line under the
action of no forces; prove that the velocity v of the centre of gravity G is given by

^^ = '^^

j'^TF^'
"^^^^^ ^ ^^ *^® distance of G from the point of contact, and k is the

radius of gyration of the body about an axis through G perpendicular to its plane,
and c is some constant.

Ex. 3. Two equal beams connected by a hinge at their centres of gravity so as
to form an X are placed symmetrically on two smooth pegs in the same horizontal

line, the distance between which is 6. Show that, if the beams be perpendicular to

each other at the commencement of the motion, the velocity of their centre of

gravity, when in the line joining the pegs, is equal to ^ /-J^J— , where i is the
'V « +4k-

radius of gyration of either beam about a line perpendicular to it through its

centre of gravity.

Ex. 4. A uniform rod is moving on a horizontal table about one extremity,

and driving before it a particle of mass equal to its own, which starts from rest

indefinitely near to the fixed extremity ; show that when the particle has described

a distance r along the rod, its direction of motion makes with the rod an angle

tan-i . [Christ's Coll.]

Exr 5. A thin uniform smooth tube is balancing horizontally about its middle

point, which is fixed; a uniform rod such as just to fit the base of the tube is placed

end to end in a line with the tube, and then shot into it with such a horizontal

velocity that its middle point shall only just reach that of the tube ; supposing the

velocity of projection to be known, find the angular velocity of the tube and rod at

the moment of the coincidence of their middle points. [Math. Tripos.]

Result. If m be the mass of the rod, m' that of the tube, and 2a, 2a' their

respective lengths, v the velocity of the rod's projection, w the required angular

velocity, then w^ _—_^ .

ma^ + Jii a

'

Ex. 6, If an elastic string, whose natural length is that of a uniform rod, be

attached to a rod at both ends and suspended by the middle point, prove by means

of vis viva that the rod will sink until the strings are inclined to the horizon at an

angle 0, which satisfies the equation cot3--cot5-2M= 0, where the tension of the

string, when stretched to double its length, is n times the weight. [Math. Tripos.]

Ex. 7. The centre C of a circular wheel is fixed and the rim is constrained to

roll in a uniform manner on a perfectly rough horizontal plane so that the plane of

the wheel makes a constant angle a with the vertical. Eound the circumference

there is a uniform smooth canal of very small section, and a heavy particle which

just fits the canal can slide freely along it under the action of gravity. If m be the

particle, B the point where the wheel touches the plane and Q- iBCm, and if u bo
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the angular rate at which B describes the circular trace on the horizontal plane,

— \ = — cosacosO-n^ cos^a cos^^H- const., where a is the radius of

the wheel. Annales de Gergonne, Tome xix.

Ex. 8. A regular homogeneous prism, whose normal section is a regular polygon

of n sides, the radius of the circumscribing circle being a, rolls down a perfectly

rough inclined plane whose inclination to the horizon is a. If «<;„ be the angular

velocity just before the n"* edge becomes the instantaneous axis, then

27r
8 + cos —

2 fj sin g 11

a sm- + 4C0S—

The Principle of Similitude.

3G7. What are the conditions necessary that two systems of

particles which are initially geometrically similar should also he

mechanically similar, i.e. the relative positions of the particles in

one system at time t should also be similar to the relative posi-

tions in the other system at time t', where t' bears to i a constant

ratio ?

In other words, a model is made of a machine, and is found to

work satisfactorily, what are the conditions that a machine made
according to the model should work as satisfactorily ?

The principle of similitude was first enunciated by Newton in

Prop. 32, Sect. vii. of the second book of the Principia. But the

demonstration has been very much improved by M. Bertmnd in

Cahier xxxii. of the Journal de V4cole Polytechnique. He derives

the theorem from the principle of Virtual Velocities so as to avoid

that necessity of considering the unknown reactions which enters

into some other modes of proof. Since all the equations of

motion may be deduced from the general principle of virtual velo-

cities that principle seems to afford the simplest method of investi-

gating any general theorem in Dynamics.

368. Let {x, y, z) be the co-ordinates of any particle of mass
m in one system referred to any rectangular axes fixed in space,

and let (X, F, Z) be the resolved part of the impressed moving
forces on that particle. Let accented letters refer to correspond-

ing quantities in the other system.

Then the principle of Virtual Velocities supplies the two
following equations:

I

2|(x-M^)5i<; + &c.| = 0,
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It is evident that one of these equations will be changed into
the other if we put X' = FX, Y' = FY, &C., a;' = Ix, y' = ly, &c.,

m' = fim,&c., t'=rf,&c., where F, I, fi, r are all constants, pro-
vided /mI=Ft^. In two geometrically similar systems, we have
but one ratio of similarity, viz. that of the linear dimensions, but
in two mechanically similar systems we have three other ratios,

viz, that of the masses of the particles, that of the forces which
act on them, and that of the times at which the systems are to be
compared. It is clear that if the relation just established hold
between these four ratios of similitude, the motion of the two
systems will be similar.

Suppose then the two systems to be initially geometrically

similar, and that the masses of corresponding particles are pro-

portional each to each, and that they begin to move in parallel

directions with like motions and in proportional times, then they

will continue to move with like motions and in proportional times

provided the external moving forces in either system are propor-

, , mass X linear dimensions ^,. ,, i i i •.•

tional to ———. r^ . bmce the resolved velocities
(time)^

doc
of any particle are -^ , &c., it is clear that in two similar systems

the velocities of corresponding points at corresponding times are

, . linear dimensions -r^ t • ^ ^i x-
proportional to . . it we eliminate the tunc
^ ^ time
between these two relations, we may state, briefly, that the con-

dition of similitude between two systems is that the moving

... ,
mass X (velocity)'

lorces must be proportional to ,-. r- • •

^ '- linear dimensions

369. On Models. M. Bertrand remarks, that in comparing

the working of a model with that of a large machine, we must

take care that all the forces bear their proper ratios. The weights

of the several parts will vary as their masses. Hence we infer that

the velocity of working the model must be made to be proportional

to the square root of its linear dimensions. The times of describing

corresponding arcs will also be in the same ratio.

When the speed of working the model and the large machine

are thus related it is convenient to apply to them the terms "cor-

responding velocities."

If there be any forces besides gravity which act on the model,

these must bear the same ratio to the corresponding forces in the

machine, if the model is to be similar to the machine. If the

model be made of the same material as the machine, the weights

of the several parts will vary as the cubes of the linear dimensions^

Hence the impressed forces must be made to vary as the cubes oi

the linear dimensions. For example, in the case of a model of a
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steam-engine, the pressure of the steam on the piston varies as the

product of -the area of the piston into the elastic force. Hence,

the elastic force of the steam used must be proportional to the

linear dimensions of the model.

Supposing the impressed forces in the two systems to have,

each to each, the proper ratio, the mutual reactions between the

parts of the systems will, of themselves, assume the same ratio. For

if, by giving proper displacements according to the principle of

Virtual Velocities, we form equations of motion to find these reac-

tions, it is easy to see that they will be, each to each, in the same

ratio as the forces. Since sliding friction varies as the normal

pressure, and is independent of the areas in contact, these frictions

will bear their proper ratio in the model and machine. This, how-

ever, is not the case with rolling friction. Recurring to Art. 164,

we see that the rolling friction varies inversely as the diameter of

the wheel, and will, therefore, bear a greater ratio to the other

forces in the model than in the machine. If the resistance of the

air be proportional to the product of the area exposed into the

square of the velocity, this resistance will bear the proper ratio in

the model and the machine.

370. Examples. As an example, let us apply the principle to the case of a

rigid body OBcillating about a fixed axis under the action of gravity. That the

motions of two pendulums may be similar they must describe equal angles,

corresponding times are therefore proportional to their times of oscillation. Since

the forces vary as the mass into gravity, we see that when a pendulum oscillates

through a given angle, the square of the time of oscillation must vary as the ratio

of the linear dimensions to gravity.

As a second example consider the case of a particle describing an orbit round

the centre of attraction whose force is equal to the product of the inverse square L.

of the distance into some constant /x. The principle at once shows that the square

of the periodic time must vary as the cube of the distance directly and as /t in-

versely. This is Kepler's third law.

In Mr Froude's experiments to determine the resistance to ships he employed

small models. The following rule used by him will be a third example. K the

linear dimensions of a ship be n times that of the model, and if at a speed V the

measured resistance to the model be iJ, then at the corresponding speed, viz, n^ r,

the resistance to the ship will be t^R.

371. Savart'a Tbeorem. In the twenty-ninth volume of the Annales de

Chimie (Paris, 1825) Savart describes numerous experiments wliich he made on the

notes sounded by similar vessels containing air. He says that if we construct

cubical boxes and set the air in motion as is ordinarily done in organ pipes we find

that the number of vibrations in a given time is proportional to the reciprocals of

the linear dimensions of the masses of air. This law was verified between extreme

limits, and its truth tested with a great many notes. He says he frequently used

the law during his researches, and never once found it led him wrong. This result

having been obtained for cubes, it was natural to examine if the same law held for
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prismatic tubes on square bases. After a great many experiments he found the
same law to be true.

He then tested the law with conical pipes in which the opening was always
of the same solid angle, then with cylmdrical pipes, then with pipes whose
bases were equilateral triangles. These he made to sound in different ways, put-

ting the mouth-piece for instance at different points of the length of the tube. In
aU cases the same law was found to hold, for tubes whose diameters were very

small compared with their lengths as well as for those whose diameters were very

great. This law he again found applicable to masses of air set in motion by com-
munication from other vibrating bodies. Hence he infers the following general law

which he enunciates as an experimental fact.

When masses of air are contained in two similar vessels, the number of vibra-

tions in a given time [i. e. the pitch of the note sounded] is inversely proportional

to the linear dimensions of the vessel.

This theorem of Savart's foUovifs at once from the principle of Similarity. Divide

the similar vessels into corresponding elements, then the motion of these elements

wiU be similar each to each if the forces vary as y---—rs • But by Mar-
(time)2

riotte's law the force between two elements varies as the product of the area of

contact into the density. Hence the times of oscillation of corresponding particles

of air must vary as the linear dimensions of the vessel.

372. The first person who gave a theoretical explanation of Savart's law was

Cauchy, who showed, in a Memoire presented to the Academy of Sciences in 1 829,

that it followed from the linearity of the equations of motion. He refers to the

general equations of motion of an elastic body whose particles are but slightly dis-

placed even though the elasticity is different in different directions. These equa-

tions which serve to determine the displacements (^, rj, f) of a particle in terms of

the time t and the co-ordinates {x, y, z) are of two kinds. One applies to all points

of the interior of the elastic body and the other to all points on its surface. These

are to be found in all treatises on elasticity. An inspection of these equations

shows that they will continue to exist if we replace f, ??, f,
x, y, z, t by k^, ktj, /ff, kx,

Ky, Kz, Kt, where k is any constant provided we alter the accelerating forces in the

ratio K to 1. Hence if these accelerating forces are zero, it will be sufficient to

increase the dimensions of the elastic body and the initial values of the displace-

ments in the ratio 1 to k, in order that the general values of f, % t and the dura-

tions of the vibrations should vary in the same ratio. Hence we deduce Cauchy's

extension of Savart's law, viz. if we measure the pitch of the note given by a body,

by a plate or an elastic rod, by the number of vibrations produced in a unit of time;

the pitch will vary inversely as the linear dimensions of the body, plate or rod, sup-

posing all its dimensions altered in a given ratio.

373. Theory of Dimensions. These results may be also

deduced from the theory of dimensions. Following the notation

of Art. 332, a force F is measured by m -^. We may then state

the general principle, that all dynamical equations must be such

that the dimensions of terms added together are the same m space,

19



290 VIS VIVA.

time and mass, tlie dimensions of force being taken to be equal to

mass . space

(time)' '

.

Let us apply this to the case of a simple pendulum of length I,

oscillating through a given angle a, under the action of gravity.

Let m be the mass of the particle, F the moving force of gravity,

then the time t of oscillation can be a function only of F, I, m
and a. Let this function be expanded in a series of powers of

F, I and m. Thus
T^tAFn^mT,

where A, being a function of a only, is a number. Since t is of no
dimension in space, we have p+q=0. Also t is of one dimen-
sion in time; .'. —2p = l. Finally t is of no dimensions in mass;
.'. p + r = 0. Hence p = ~ \, q = r = 1, and since p, q, r have
each only one value, there is but one term in the series. We

infer that in any simple pendulum r = A kJ -^ where A is an

undetermined number. See also Art. 370.

374. Ex. 1. A particle moves from rest towards a centre of force whose attrac-

tion varies as the distance in a medium resisting as the velocity, show by the

theory of dimensions that the time of reaching the centre of force is independent of

the initial position of the particle.

Ex. 2. A particle moves from rest in vacuo towards a centre of force whose

attraction varies inversely as the n* power of the distance, show that the time of

TC+ 1
reaching the centre of force varies as the —5- th power of the initial distance of the

particle.

Clausius' theorem of stationary motion.

375. To determine the mean vis viva of a system of material points in stationary

motion *.

By stationary motion is meant any motion in which the points do not continually

move further and further from their original position, and the velocities do not

alter continuously in the same direction, but the points move within a limited

space and the velocities only fluctuate within certain limits. Of this nature are all

periodic motions, such as those of the planets about the sun and the vibrations of

elastic bodies, and further, such irregular motions as are attributed to the atoms

and molecules of a body in order to explain its heat.

Let X, y, z be the co-ordinates of any particle in the system and let its mass

be m. Let Z, Y, Z be the components of the forces on this particle. Then

^x
TO -1-5

=

X. We have by simple differentiation.

* This and the next article are an abridgement of Clausius' paper in the Phil.

Mag., August, 1870.
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and therefore ^ f$Y=--^^+- ^^
2 \dtj 2^4 dt^

Let this equation be integrated with regard to the time from to ( and let the
integral be divided by t, we thereby obtain

m f*fdxy 1 /« m rd(x^) (d{x')\ "I

in which the application of the suflfix zero to any quantity imphes that the initial

value of that quantity is to be taken.

The left-hand side of this equation and the first term on the right-hand side are

evidently the mean values of «
( rf7 )

^^^ ~ 2 ^"^ during the time t. For a periodic

motion the duration of a period may be taken for the time t; but for irregular

motions (and if we please for periodic ones also) we have only to consider that the

time t, in proportion to the times during which the point moves in the same direc-

tion in respect of any one of the directions of co-ordinates is very great, so that in

the course of the time t many changes of motion have taken place, and the above

expressions of the mean values have become sufficiently constant. The last term

of the equation, which has its factor included in square brackets, becomes, when

the time is periodic, equal to zero at the end of each period. "When the motion is

not periodic, but irregularly varying, the factor in brackets does not so regularly

become zero, yet its value cannot continually increase with the time, but can only

fluctuate within certain limits ; and the divisor t, by which the term is affected,

must accordingly cause the term to become vauishingly small with very great values

of t. The same reasoning will apply to the motions parallel to the other co-ordi-

nates. Hence adding together our results for each particle, we have, if u be the

velocity of the particle m,

mean ^ Smr2= - mean ^ S {Xx -t- ry+ Zz).

The mean value of the expression - - S (Za: -f 7?/ 4- Zz) has been called by Claasiua

the virial of the system. His theorem may therefore be stated thus, the mean

semi vis viva of the system is equal to its virial.

376. In order to apply this theorem to heat, let us consider a body as a system

of material particles in motion. The forces which act on the system will in general

consist of two parts-. In the first place,' the elements of the body exert on each

other attractive or repulsive forces, and secondly, forces may act on the system from

without. The virial will therefore consist of two parts, which are called the

internal and external virial. It has just been shown that the mean semi vis viva

will be equal to the sum of these two parts.

If <p (r) be the law of repulsion between two particles whose masses are m and m

,

we have Xx+ X'x'= -4>{r)'^x-cp{r)'^x'= >l>{r)^-^^^. And since for the

two other co-ordinates corresponding equations may be formed, we have for the

internal virial ---Z,{Xx + Yy + Zz)= -I, ^r^ (r).

As to the external forces, the case most frequently to be considered is where the

body is acted on by a uniform pressure normal to the surface. If p be this pres-

sure, dff an element of the surface, I the cosine of the angle the normal makes with

19—2
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the axis of a;, - ^ IiXx= ^ I xpld<r=^ j / xdydz. If V be the volume of the body

1 3
this is -xpV, and therefore the whole external virial is ^pV.

Ex. 1. Show that the virial of a system of forces is independent of the origin

and the directions of the axes supposed rectangular.

The first result is clear, since in stationary motion SZ= 0, &c. The second

follows from the equality Xx + Yy-V Zz=Bp, where R is the resultant of X, Y, Z, and

p is the projection of the radius vector on the direction of R,

Ex. 2. If an infinite number of smooth perfectly elastic spherical particles,

equally distributed throughout a hollow vessel of any form, be in motion, each with

any velocity, show that the resulting continuous pressure p produced by their

impacts on the interior surface, when referred to a unit of area, is equal to one-third

of the vis viva of the particles which occupy a unit of volume. If the particles be

also under the action of their mutual forces, and P be the mean potential energy,

dP
show that to find p we must subtract from this result j=z. . See Art. 345. This is

a proposition in the Kinetic theory of gases.

General Theorems on Impulses.

377. General equation of virtual velocities. Let (x, y, z)

be the co-ordinates of any particle m, and (X, Y, Z) the resolved

parts in the directions of the axes of the impulses which act on

that particle. Let {u, v, w), {u', v', w) be the resolved parts of

the velocity of the particle in the same direction just before and
just after the impulse.

The momenta m(v! — u), m (v — v), m (w' — w) being reversed

for every particle, will be in equilibrium with the impulsive forces.

Hence by virtual velocities we have

Xm {(w' -u)hx + (v -v)Bi/ + {w - w) hz] = 2 {Xhx + Yhy +ZSz),

where Bx, By, Bz are any smalt arbitrary displacements of the

particle m consistent with the geometrical conditions of the

system.

This is the general equation of virtual moments, and it will

be seen further on that the subsequent motion of the system may
be deduced from it. At present we are only concerned with such
general properties of the motion as may be deduced from this

equation by a proper choice of the arbitrary displacement.

378. Camot's first theorem. Let us first suppose that the
only impulsive forces are those produced by the actions and re-

actions of the bodies forming the system. For example, two
bodies may impinge on each other or two points may be suddenly
connected together by an inelastic string. Then these mutual
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actions and reactions are in equilibrium and the sum of their
virtual moments will be zero for all displacements which do not
alter the distance apart of the particles acting on each other.
Suppose the bodies impinging to be inelastic then just after the
impact the points of the two bodies which impinge have no velocity
of separation normal to the common surface of the bodies. If
therefore we take as our arbitrary displacement the actual dis-
placement of the system during the time dt just after the impact,
the sum of the virtual moment of the impulses will be zero.

Hence writing Bx = u'8t, By = v'Bt, Bz = w'Bt, we have

tm {{u -u)u' + {v' -v)v' + {w' - w) w'] = 0.

This gives us

Swi (u'^ + v'^ + w'^) = tm {uu + w' + ww')

which may be put into the form

2m {u'^ + v'^ + w'^) - tm {v? + v^-\- w")

= -tm {(u' - uf + {v' - vf + {w' - wf].

Therefore in the impact of inelastic bodies vis viva is always lost.

This is the first part of Carnot's general Theorem.

379. Generalization of Carnot's theorem. It should be
noticed that Carnot's demonstration does not apply exclusively

to collisions but to all impulses which do not appear in the equation

of Virtual Velocities as applied to the subsequent displacement.

Let a system be moving in any way, and let us suddenly introduce

some new restraints by which some of the particles are compelled to

take new courses. The impulses which produce this change of

motion are of the nature of reactions and are such that in the

subsequent motion their virtual moments are zero. It therefore

follows that vis viva will be lost and the amount of vis viva lost

is equal to the vis viva of the relative motion. This is sometimes

called Bertrand's Theorem.

380. Carnot's second theorem. Let us next suppose that

an explosion takes place in any body of the system. Then jy^t

before the impulse, any two particles about to separate are moving
so that the virtual moments of their mutual actions are equal and

opposite, but just after the explosion this may not be the case.

Hence we now put Bx = uBt, By = vBt, Bz = wBt and we have from

the equation of virtual moments

2ot {(u' -u)u + (v -v)v + {w' -w)'w] = 0.

This may be put into the form

tm {u" + v" + w") - Sm (u' + vV w')

= tm {{u - uf + {v - vf + {w - wY}.

Therefore in cases of explosion vis viva is always gained. This

is the second part of Carnot's Theorem.
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381. Thirdly, let the bodies of the system be perfectly elastic.

If two elastic bodies impinge the whole action consists of two parts

a force of compression as if the bodies were inelastic, and a force of

restitution of the nature of an explosion. The circumstances of

these two forces are equal and opposite to each other. Hence
the vis viva lost in compression is exactly balanced by the

vis viva gained in the restitution. This is the last part of Camot's

Theorem.

382. Three forms of the equation of Virtual Moments.
Let us now resume the general equation of virtual moments for a

system in motion acted on by any impulses. We have already

seen that there are two displacements, either of which we may with

advantage choose as our arbitrary displacement. One of these

coincides with the motion just before and the other with the

motion just after the action of the impulses. These equations may
be written

2m {(yf — u)u + (v'—v)v+(w'— w)io} = 'Z {Xu +Yv-\- Zw)

tm {{u' - u) u + {y'-v)v+{w'- w)w] = t (Zw'+ Yv'+Zw).

But besides these we may conceive a great variety of possible

motions which might occur, i.e. which are geometrically possible.

Let {u", v", w") be the components of the velocity of the typical

particle m for any one of these possible motions. Then we may
write hx = u"ht, By = v"Bt, Bz = w"Bt and we obtain

tm{{u' ^u)u'' \-{v'-v)v''-^{w'-w)w'']^t{Xu''-\-Yv''+Zw'').

This equation of course includes the two former as special cases.

This possible motion might have been produced from the initial

state by the application of proper impulses. Let these be repre-

sented by X', Y', Z'. Then with these forces this state becomes
the actual subsequent motion and our former subsequent motion
becomes a mere variation from this motion. Thus we may write

down three more equations, obtained from these by interchanging

« v\ w') with (m", v",w") and (X, Y, Z) with (Z', F, Z).

By comparing these equations we may deduce several general

theorems. But in order to avoid a great deal of analytical reason-

ing let us adopt a simple notation.

383. Vis Viva of the Relative Motion. Let ^T be the
initial vis viva of the system. Let 22" be the vis viva after the
application of a set of impulses which we shall designate as the set

A, and let the resulting motion be called the motion A. Let 2T"
be the vis viva of any other possible variation of this motion which
we shall call the motion B, and let the forces which produce this

be called the forces B. We shall also want to use the vis viva of

the relative motion of any two of these. Thus taking the two first
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and expressing the vis viva of the relative motion by 2R^^ we have

2B,^ = tm {(u' - uf + {v' - vf + {w - w){
= 2T' +2T- 2tm {uu + vv' + ww'),

tm {uu' + VV +ww)=T+T' - R^^

.

Similarly if we call the vis viva of the other relative motions E^
and i2j2 we have

tm {uu'' + vv" + ww" ) = T + T"- R^,

Xm (wV'+ vv"^ w'w") = T'+ T" - R^^.

The three equations deduced from Virtual Velocities in Art. 382
may therefore be written

T' — T— R^^ = Vir. Mt. of forces A in initial motion,

T'-T+R^^ = Vir. Mt. of forces A in motion A,

T'-T-R^^ + R,^ = Vir. Mt. of forces A in motion B,

where the divisor dt on the right-hand side has been dropped for

the sake of brevity. Or we may say that the right-hand sides

express the rates at which the forces A are doing work in the

respective motions. Or again, the right-hand sides express the

sums of the products of each force into the velocity of its point of

application resolved in the direction of the force, for the respective

motions.

384. Change of vis viva due to impulses. If we add the

first two equations together we see that R^^ disappears and thus we
are led to the theorem ; If any impulses act on a system in motion

the change in the semi vis viva is equal to the sum of the products of
each force into the mean of the velocities of its point of application

just before and just after, both being resolved in the direction of the

force. This theorem was proved in a different manner for a single

body in Art. 346.

385. Vis Viva of the Relative motion. If we subtract

one equation from the other we are led to the theorem; If any

impulses act on a system in motion the semi vis viva of the relative

motion is equal to the sum of the products of each force into half the

excess of the resolved velocity of its point of application just after

over that just before, both velocities being resolved in the direction of

the force.

386. Let us now consider the third equation in Art. 383, and

let us choose the hypothetical motion B, so that the virtual mo-

ments of the forces A may in it be the same as in the actual

motion. Then we have

^02 = ^01 + -^12-

Therefore, if any impulsive forces act on a system in motion the
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vis viva of the relative motion is less than if the particles took any

other motion for which the virtual moments of these impulses is

the same. Of course this hypothetical motion must be consistent

with the geometrical conditions of the system.

387. Sir W. Thomson's Theorem. If the system start

from rest we have T=0, B^^= T, R^=T", and thus we obtain

T" = T' + -Rj2- This gives us Sir W. Thomson's theorem, ^m^-

pose a system to be aJt rest and to he set in motion hy jerks or

impulses at given points so that the motions of these points are pre-

scribed, then the vis viva of the subsequent motion is less than that of

any other hypothetical motion the system could take in which these

points have the prescribed motion. By prescribing the motion of

the points of application of the impulses {i.e. the forces called A
in the fundamental equations of Art. 383) we secure the fact that

their virtual moment is the same for all hypothetical displacements

of the system.

By the use of this proposition the actual motion may be found

by the application of the ordinary processes of maxima and

minima.

388. Bertrand's Theorem. We may write down the equa-

tions for the motion B corresponding to those given in Art. 383 for

the motion A. These are

T" — T—B^^ = Vir. Mt. of forces B in initial motion,

T" - T+ B^= Vir. Mt. of forces B in motion B,

T"-T- 72,3+ R^= Vir. Mt. of forces B in motion A,

where the divisor dt has been omitted as before.

Comparing the second of these with the last of the three given

in Art. 383 we see that if we choose the hypothetical motion B
so that the right-hand sides of these two equations are the same,

we have

In order that the right-hand sides may be equal we may suppose

the motion B to differ from the motion A only by the introduction

of some constraints, so that the forces B differ from the forces A
only by some reactions whose virtual moments are zero in the

motion B.

We thus arrive at a theorem of Lagrange generalized first by
Delaunay (Liouville's Journal, vol. v.) and afterwards by Bertrand

in his notes to the M^canique Analytique. Suppose a system in

motion to be acted on by any impulses then the vis viva of the sub-

sequent motion is greater than if the system were subjected to any
constraints and acted on by the same impulses. See Art. 379.
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Comparing Sir W. Thomson's and Bertrand's theorem we per-

ceive that when the motion of the points of application of the

impulses are given the subsequent motion may be found by making
the vis viva a minimum, but when the impulses are given the sub-

sequent motion may be found by introducing some constraints and
making the vis viva a maximum.

389. Examples. To understand these two principles properly we shonld

examine their application to some simple cases of motion.

Ex. 1. A body at rest Imving one point fixed is struck by a given impulse,

find tlie resulting motion. See Art. 308 and Art. 310.

Let L, M, N he the given components of the impulse about the principal axes

at 0. Then if the body begin to turn about Skntixia fixed in space whose direction

cosines are (I, m, n), the angular velocity w is found by Art. 89 from

{A l^+ Bm2 ^Cn^)u= Ll +Mm + Nn.

To find the axis about which the body begins to turn when free, we must by

Lagrange's Theorem make the vis viva a maximum. That is we have

{AP + Bnf+ Cn^) w^=maximum.

We have also the condition P+ m^ + n^—l.

Treating these three equations in the usual manner indicated in the Differential

Al Bm On
Calculus, we find 'L~lil~W'

which determines the direction cosines of the axis about which the body begins

to turn.

Ex. 2. A body is at rest with one point fixed in space. Suddenly a straight

line OG fixed in the body begins to move round in a known manner, find the motion

of the body. See Art. 293.

Take the instantaneous position of OC as the axis of Z, and let be the origin.

Let the motion of OC be given by the angular velocities 6, 4> about the axes Ox, Oy,

and let w be the required angular velocity of the body about Oz. Then, by

Sir W. Thomson's theorem, we make the vis viva of the body a minimum. We

Ae^+B<p^+ CoP - 2D0W - 2Eeo}-2Fd<l)=mhi.,

where A, B, &c. are the moments and products of inertia at 0. Differentiating we

^*^®
Cco-D4>-Ed=0.

Thus w has been found. This last equation expresses the fact that the angular

momentum about the axis of Z is unaltered by the blow.

Ex. 3. A rod AB at rest is acted on by an impulse F perpendicular to its length

at the extremity A, and that extremity begins to move with a velocity/. Fmd the

point in AB about which the rod will begin to turn (1) when F ib given and

[2) when / is given. If AO^x, show that both Sir W. Thomson s theorem and

La^range'B or Bertrand's theorem lead to the same function of x to be made a

minimum.

Ex.4. A system is moving maay manner. A blow is given at any point per^

pendicular to L direction of motion of that jK^int. Prove that the vis viva la

increased.
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This follows from the first of the equations in Art. 383 ; for the virtual moment

of this force (there called A) vanishes in the initial motion. Hence T'=T+Rqi.

Ex. 5. A system at rest if acted on by two different sets of impulses called

A and B will take two different motions. Prove that the sum of the virtual

moments of the forces A for displacements represented by the velocities in the

motion B is equal to the sum of virtual moments of the forces B for displacements

represented by the velocities in the motion A.

Since r=0, T'=Bq^, and T"=Bq^ the result follows by comparing the third

equations in Art. 383 and Art. 388.

390. Gauss' zaeasiire of tbe " constraint." The expression, called 22 in the

previous articles, and which represents the vis viva of two relative motions has

been interpreted by Gauss in another manner. Let the particles vi-^, m^, &c. of

a system just before the action of any impulses occupy positions which we shall

call Pi) P2> ^^- ^^^ ^s suppose that these particles if free would under the action

of these impulses and their previous momenta acquire such velocities that in the

time dt subsequent to the impulses they would describe the small spaces Piqi, p^q^,

&o. But if these particles were constrained in any manner consistent with the

geometrical conditions which hold just before the action of the impulses, let us

suppose that they would under the same impulses and their previous momenta

describe in the time dt subsequent to the impulses the small spaces p^r^^, p^r^, &c.

Then the spaces g^rj, JjT-j, &c. may be called the deviations from free motion due

to the constraints. The sum Sm (qrf is called the " constraint."

391. We might also measure the constraint by the ratio of this sum to (dt)^.

We then take p^qi, &o., pjTi, &c. to represent, not the displacements in the time dt,

but the velocities of the particles just after the action of the forces in the two cases

in which the particles are free or constrained. Beferring to D'Alembert's principle

in Art. 67, we see that pq represents the resultant of the previous velocity and of

the velocity generated by the impressed force on the typical particle m, while qr

represents the velocity generated by the molecular forces*.

If we suppose that the lengths pq, qr, &c. represent velocities and not displace-

ments, let («, V, w) be the components of pq in any motion, and («', t>', «?') the

* Gauss' proof of the principle is nearly as follows. By D'Alembert's principle

the particles m^, m^, &c. if placed in the positions rj, r2, (fee. would be in equihbrium

under the action of these molecular forces alone. Let us apply the principle of

virtual velocities, and displace the system so that the typical particle m describes

a space rp, making an angle <p with the direction rq of the molecular force on m.

Then since the product j?i {rq) measures the molecular force on to, we have

^m{rq) {rp co39!>)=0.

But qf^=qr^+ rfy^-2qr . rp cos </>.

Hence we easily find Sm (qp)^= Sm {qr)^+ Hm {rp)^.

In the actual motion the particles move from pi, &c. to r^, &c. and the " con-

straint" is Sm [qry. If the particles had been forced to take any other hypothetical

courses, by which they would be brought into the positions pi, &c., the " constraint"

would be 2m (gp)^. Gauss' Principle asserts that the former is always less than

the latter.
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components of pr in any other motion ; then

Sm (gr)2=2m
{
[v! - uf+ {v' - vf + (to' - w)2

}

measures the " constraint" from one motion to the other. This is precisely what

we have represented by the symbol 2R, with suffixes to denote which two motions

are meant.

892. Oauss' principle of least constraint. Suppose a system of particles in

motion and constrained in any given manner to be acted on by any given set of im-

pulses. Let 2T' be the vis viva of the subsequent motion. This is the actual motion

taken by the system. Let us'Viow suppose that the particles had been forced to take

some hypothetical motion consistent with the geometrical conditions by introducing

some further constraints. Let 2T" be the subsequent vis viva in this hypothetical

motion. Thirdly, let us suppose that all constraints were removed so that the parti-

cles were acted on solely by the given set of impulses. Let 2T'" be the subsequent

vis viva in this free motion. Let 2r be the initial vis viva common to all these

motions. Let 2R^^, 2JJj3, 2B^^ be the vires vivas of the relative motions of the first,

second and third subsequent motions as denoted by the suffixes.

By Bertrand's theorem, since the hypothetical motion is more constrained than

the actual motion, we have

Also, since each of these is more constrained than the free motion,

r"=r +Ei3,

r"'=T" + iJ23.

Hence we have JJ23= -^13+ -^12'

Therefore ^23 is always greater than B^y It follows that the motion which the

system actually takes when subject to any impulses is such that the "constraint"

from the free motion is less than if the system took any other motion consistent

with the geometrical conditions. This result is true whichever way the "con-

straint" is measured.

393. If we suppose the system to be acted on by a series of indefinitely small

impulses, these impulses may be regarded as finite forces. We therefore infer the

following theorem, which is usually called Gauss' principle of least constraint.

The motion of a system of material points connected by any geometrical relations

is always as nearly as possible in accordance with free motion, i.e. if the constraint

during any time dt is measured by the sum of the products of the mass of each

particle into the square of its distance at the end of that time from the position it

would have taken if it had been free, then the actual motion during the time dt w

such that the constraint is less than if the particles had taken any other position.

Gauss remarks that the free motions of the particle when they are incom-

patible with the geometrical conditions of the system are modified in exactiy the

same way as geometers modify results which have been obtained by observation,

i.e. by applying the method of Least Squares so as to render them compatible with

the geometrical conditions of the question.

394. Ex. Any number of particUs mi, m,, &c. are acted on by any forces

whose components are m,X„ m,Yx, m,Z„ &c. Their co-ordinates x., yi, z^;

X2 y^, Z2; &c. are connected together by some relation such as ^{x^, &o.)-0, ;or

instance the particles might be beads slung on a stnng of given length whose extremi-

ties are tied together. It is required to form the equations of motion.

Let U, V, W be the resolved velocities of the typical particle m at the time t

;
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u, V, w its resolved velocities just after the action of the impulse whose resolved

parts are viXdt, viYdt, mZdt on the supposition that the particle is perfectly free.

But as the typical particle is not perfectly free, let u', v', w' be its resolved velocities

at the same instant. Then to find u', v', w' we make

iJi3=Sm [(m' - u)^+ {v' - v)^+ {w- w)^]=minimum

where the S implies summation for all the particles. This quantity is to be a

minimum for all variations of u', v', w' subject to the condition

S (0,m' + <pyv'+ <p,w') = 0,

where the S here also implies summation for all suffixes.

To make i?i3 a minimum we take the total differential of each of these quantities

with regard to all the accented letters, multiply the second by some indeterminate

multiplier X, and add the results together. Equating to zero the coefficients of

du', &c. we obtain the three typical equations

m(u'-u) + \<p^=0 m(»'-r) + X0j,= O m{w'-w)+\<p,=0.

Putting suffixes we'have sufficient equations to find \, and the (u', v', w') of every

particle.

We may write these equations in another form. Since U and u' are two succes-

sive values at an interval dt of the same quantity in the continuous motion we are

seeking to investigate, we write u' - U— -r- dt. Since u is the resolved velocity
at

after the impulse when the particle is free we have u- U=Xdt. The equations

therefore become

(f-) +/i0,=O, &c.

where ndt has been written for X.

In this form the equations might have been derived directly from the principle

of virtual velocities. By that principle we have

Zmrr^-Z^Jsz+Ac. 1=0

with the condition S [<pxSx + &c.]= 0.

Multiplying the second by an indeterminate multiplier /i, adding the results

together, and equating to zero the coefficients of 3x, &o. we obtain the same results

as before.

EXAMPLES*.

1. A screw of Archimedes is capable of turning freely about its axis, which is

fixed in a vertical position : a heavy particle is placed at the top of the tube and

runs down through it ; determine the whole angular velocity communicated to the

screw.

Result. Let n be the ratio of the mass of the screw to that of the particle,

a=the angle the tangent to the screw makes with the horizon, h the height

descended by the particle. If w be the angular velocity generated, prove that

u^a^ (n+ 1 ) (n+ sin^ a.) = 2gh cos^ a.

* These examples are taken from the Examination Papers which have been set

in the University and in the Colleges.
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2. A fine circular tube, carrying within it a heavy particle, is set revolving

about a vertical diameter. Show that the difference of the squares of the absolute

velocities of the particle at any two given points of the tube equidistant from the

axis is the same for all initial velocities of the particle and tube.

3. A circular wire ring, carrying a small bead, lies on a smooth horizontal

table ; an elastic thread, the natural length of which is less than the diameter of

the ring, has one end attached to the bead and the other to a point in the wire;

the bead is placed initially so that the thread coincides very nearly with a diameter

of the ring ; find the vis vivJ of the system when the string has contracted to its

original length.

4. A straight tube of given length is capable of turning freely about one ex-

tremity in a horizontal plane, two equal particles are placed at different points

within it at rest, an angular velocity is given to the system, determine the velocity

of each particle on leaving the tube.

5. A smooth circular tube of mass M has placed within it two equal particles

of mass m, which are connected by an elastic string whose natural length is | of

the circumference. The string is stretched until the particles are in contact and

the tube is placed flat on a smooth horizontal table and left to itself. Show that

when the string arrives at its natural length, the actual energy of the two particles

is to the work done in stretching the string as 2 (ikr^+lfm+m") : (Jlf+2ni) (2Jlf+m).

6. An endless flexible and inextensible chain in which the mass per unit of

length is
fj.
through one continuous half, and p.' through the other half, is stretched

over two equal perfectly rough uniform circular discs (radius a, mass M) which can

turn freely about their centres at a distance h in the same vertical line. Prove that

the time of a small oscillation of the chain under the action of gravity is

2^ /M+(7ra + b)(M + /)

7. Two particles of masses m, m' are connected by an inelastic string of length a.

The former is placed in a smooth straight groove, and the latter is projected in a

direction perpendicular to the groove with a velocity V. Prove that the particle m

will oscillate through a space >, and if m be large compared with m' the time

, 2ira [ ^ m'\
of oscillation is nearly -^ \ T~)'

8. A rough plane rotates with uniform angular velocity n about a horizontal

axis which is parallel to it but not in it. A heavy sphere of radius a being placed

on the plane when in a horizontal position, rolls down it under the action of

gravity. If the centre of the sphere be originally in the plane containing the

moving axis and perpendicular to the moving plane, and if x be its distance from

this plane at a subsequent time t before the sphere leaves the plane, then

24 V35 V ra* / ^^ ^

c being the distance from the axis to the plane measured upwards.

9. The extremities of a uniform heavy beam of length 2a slide on a smooth

wire in the form of the curve whose equation is r=a (1- cos ») the prime radms

being vertical and the vertex of the curve downwards. Prove that if the beam
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be placed in a vertical position and displaced with a velocity just sufficient to

bring it into a horizontal position tan 0=~ I e'^tk * - e~'v ii'}- , where 6 is the angle

through which the rod has turned after a time t.

10. A rigid body whose radius of gyration about G the centre of gravity is k, is

attached to a fixed point (7 by a string fastened to a point A on its surface. GA{ = 'b)

and AG( = a) are initially in one line, and to G is given a velocity V at right angles

to that line. No impressed forces are supposed to act, and the string is attached

so as always to remain in one right line. If be the angle between AG and AC

P-4a6sin2^

2irbk

Jt) ~^ T.^1 i •
iff '

^^^ ^^ *^^ amplitude of 0, i.e.

2 sin-i—j^ be very small, the period is , .2^ Vja{a + b)

11. A fine weightless string having a particle at one extremity is partially

coiled round a hoop which is placed on a smooth horizontal plane, and is capable

of motion about a fixed vertical axis through its centre. If the hoop be initially at

rest and the particle be projected in a direction perpendicular to the length of the

string, and if s be the portion of the string unwound at any time t, then

s2_52^_A_ VH^+ 2Vat,m + fi

where b is the initial value of s, m and n the masses of the hoop and particle, a the

radius of the hoop and V the velocity of projection.

12. A square formed of four similar uniform rods jointed freely at their ex-

tremities is laid upon a smooth horizontal table, one of its angular points being

fixed : if angular velocities w, u' in the plane of the table be communicated to the

two sides containing this angle, show that the greatest value of the angle (2a)

between them is given by the equation C08 2a= -^ ^-o ^

.

13. Two particles of masses m, m' lying on a smooth horizontal table are con-

nected by an inelastic string extended to its full length and passing through a small

ring on the table. The particles are at distances a, a' from the ring and are pro-

jected with velocities v, v' at right angles to the string. Prove that if mv*a^=m,'v'^a'*

their second apsidal distances from the ring will be a', a respectively.

14. If a uniform thin rod PQ move in consequence of a primitive impulse

between two smooth curves in the same plane, prove that the square of the angular

velocity varies inversely as the difference between the sum of the squares of the

normals OP, OQ to the curves at the extremities of the rods, and y'V of the square

of the whole length of the rod.

15. A small bead can sUde freely along an equiangular spiral of equal mass

and angle a which can turn freely about its pole as a fixed point. A centre of

repulsive force F is situated in the pole and acts on the particle. If the system

start from rest when the particle is at a distance a, and to be the angular velocity

of the spiral when the particle is at a distance k from the pole, show that

mk* (1 + 2 cot'^ a)ur^=
I
Fdr where mk^ is the moment of inertia of the spiral about

its pole.
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16. The extremities of a uniform beam of length 2a, shde on two slender rods
without inertia, the plane of the rods being vertical, their point of intersection

fixed and the rods inclined at angles j and - 7 to the horizon. The system is set

rotating about the vertical line through the point of intersection of the rods with

an angular velocity w, prove that if be the inclination of the beam to the vertical

at the time t and o the initial value of 6

, fdey (3cos2a+ sin2a)2 , ,, „ . , v . 6ff, .

4 -J-)
+^-=

2/), • oz, &'^=(3cosga+ sm2a fa)«+— (sina-sing).

17. A perfectly rough sphere of radius a is placed close to the intersection of

the highest generating lines of two fixed equal horizontal cylinders of radius c, the

axes being inclined at an angle 2a to each other, and is allowed to roll down be-

tween them. Prove that the vertical velocity of its centre in any position will be

sin a cos (6 -! „ _ ^, s-^l- , where d> is the inclination to the horizon of the(7-5 cos^ <p cos^ a
J

radius to either point of contact.

d^x dT
18. Let a complete integral of the equation -^^ = -— in which T is a function

of a; be a;=Z, Z being a known function of a and 6 two arbitrary constants and t.

d^x dT dR
Then the solution of -jj = :;?- + 3— > -^ being a function of x, may also be repre-

u/t dx ctx

sented by a;=:Z provided a and b are variable quantities determined by the equations

da_,dR db

dt~ 'db' di''

time explicitly.

d^x dT dR
Then the solution of -jj = :;?- + 3— > -^ being a function of x, may also be repre-

U/t dx ctx

led

rf:= ]c— , —= -k— , where /fc is a function of a and b which does not contain the
dt db dt da



CHAPTER VIII.

Lagrange's Equations.

395. Two advantages of Lagrange's equations. Our
object in this section is to form the general equation of motion of

a dynamical system freed from all the unknown reactions and
expressed, as far as is possible, in terms of any kind of co-ordinates

which may be convenient in the problem under consideration.

In order to eliminate the reactions we shall use the principle

of Virtual Velocities. This principle has already been applied to

obtain the equation of Vis Viva by giving the system that par-

ticular displacement which it would have taken if it had been left

to itself. But since every dynamical problem can, by D'Alembert's

principle, be reduced to one in statics, it is clear that by giving

the system proper displacements, we must be able to deduce, as

in Art. 357, not Vis Viva only, but all the equations of motion.

396. Let {x, y, z) be the co-ordinates of any particle m of the

system referred to any fixed rectangular axes. These are not

independent of each other, being connected by the geometrical

relations of the system. But they may be expressed in terms of

a certain number of independent variables whose values will de-

termine the position of the system at any time. Extending the

definition given in Art. 73. we shall call these the co-ordinates

of the system.' Let these be called 6, <j>, yjr, &c. Then x, y, z, &c.

are functions of 6, <}>, &c. Let

x=f{t,e,^,&c.) (1),

with similar equations for y and 2. It should be noticed that these

equations are not to contain -^, -^, &c. The independent

variables in terms of which the motion is to be found may be any
we please, with this restriction, that the co-ordinates of every

particle of the body could, if required, be expressed in terms of
them by means of equations which do not contain any differen-

tial coefficients ivith regard to the time.

The number of independent co-ordinates to which the position

of a system is reduced by its geometrical relations, is sometimes
spoken of as the number of the degrees offreedom of that body.
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Sometimes it is referred to as being the number of independent
motions which the system admits of.

«*t;i>e;/«ie«c

In the following investigations total differential coefficients

with regard to t will be denoted by accents. Thus - and ^~

will be written x' and x".
^* ^^

If 2r be the vis viva of the system, we have

^T=^m{x"-\-y"^z")
(2);

we also have, since the geometrical equations do not contain
V

, ^, &c.,

, dx dx ^, dx „ „

*=<S + S?^+3^^+*^- (3).

with similar equations for y' and li. In these the differential co-

efficients ^ , ^ , &c. are all partial. Substituting these in the

expression for 2T, we find

^T=F{t, e,<f>,&c. e',(f>',&c.).

When the system of bodies is given, the form of F will be
known. It will appear presently that it is only through the form
of F that the effective, forces depend on the nature of the bodies
considered ; so that two dynamical systems which have the same
i'^are dynamically equivalent.

It should be noticed that no poioers of 6', </>'. &c. above the second
enter into this function, and when the geometrical equations do not
contain the time explicitly, it is a homogeneousfunction of & ,

^', &c.

of the second order.

397. Virtual moments of the effective forces. To find
the virtual moments of the momenta of a system, and also of the

effective forces corresponding to a displacement produced by varying
one co-ordinate only.

Let this co-ordinate be 0, and let us follow the notation al-

ready explained. Let all differential coefficients be partial, unless

it be otherwise stated, excepting those denoted by accents. Since

x', y', z are the components of the velocity, the virtual moment of

the momenta will be ^mix'^x \- y'hy -V z'hz), where hx, hy, hz are

the small changes produced in the co-ordinates of the particle m
by a variation hd of d. This is the same as

If 2 T' be the vis viva given by (2) of the last article

§ = 2m(^'^^ + &c.).

B.D. 20
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But differentiating (3) partially with regard to 6', we see

dso dec ,

that -T7i,=^-n\' Hence the virtual moment of the momenta is

ad da

equal to -r^ B6.

398. The virtual moment of the effective forces will be

Omitting the factor B0 for the moment, this may be written in

the form

where the -j- represents a total differential coefficient with regard
dt

to t We have already proved that the first of these terms is

-jijoi' It remains to express the second term also as a differ-

ential coefficient of T. Differentiating the expression for 2T
partially with regard to

dT ^ ( ,dx' . \^ = Sm(^^^ + &c.j

But differentiating the expression for co with regard to

dx' _ d^cc d?x ^ d^x ,, .o
de~dedrw^^Wd4>'^^^'''

d dec
and this is the same ^^ -r.-rh- Hence the second term may be

dT
written -j^i, and the virtual moment* of the effective forces is

do

therefore g^"-^) 8ft

• The following explanation will make the argument clearer. The virtual

moment of the effective forces is clearly the ratio to dt of the difference between

the virtual moments of the momenta of the particles of the system at the times

t-Vdt and t, the displacements being the same at each time. The virtual moment

of the momenta at the time t is first shown to be -^, S0. Hence ( -ttt, + ^ ^^ dt] S6
dff \d9' dtdff J

is the virtual moment of the momenta at the time t+ dt corresponding to a dis-

placement W consistent with the positions of the particles at that time. To make
the displacements the same, we must subtract from this the virtual moment of the

momenta for a displacement which is the difference between the two displacements

at the times t and t-\-dt. Since dx = -^58, this difference for an abscissa is
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399. Lagrange^s equations for finite forces. To deduce
the general equations of motion referred to any co-ordinates.

Let U be the force-function, then ZJ is a function of d,
<f),

&c.
and t. The virtual moment of the impressed forces correspondina

to a displacement produced by varying 6 only is -j^ BB. But by
du

D'Alembert's principle this must be the same as the virtual
moment of the effective forces. Hence

ddT_dT^dJI
dt dd' dd ~ dd

'

Q. -1 1
, d dT dT dU ,

Similarly we have ^,^-^^ = ^. &c. = &c.

It may be remarked that if V be the potential energy we
must write — V for U. We then have

d_dT_dTdV
dt dd' dd ^ dd '

with similar equations for <^, x/r, &c.

In using these equations, it should be remembered that all the

differential coefficients are partial except that with regard to t.

Let us write L=T+ U, so that L is the difference of the kinetic

and potential energies. Then since ?7is not a function of ^',
(f>',

&c.

the Lagrangian equations of motion may be written in the typical

form
d dL dL _
Jtde'~dd

~

Thus it appears that when the one function L is known, all the

differential equations of motion may be deduced by simple par-

tial differentiations. The function L is called the Lagrangian

function.

These are called Lagrange's general equations of motion. Lagrange only

considers the case in which the geometrical equations do not contain the time

explicitly, but it has been shown by Vieille, in Liouville's Journal, 1849, that the

equations are still true when this restriction is removed. In the proof given above

we have included Vieille's extension, and adopted in part Su: W. Hamilton's mode

of proof, Phil. Trans., 1834. It differs from Lagrange's in these respects; firstly, he

makes the arbitrary displacement such that only one co-ordinate varies at a time,

and secondly, he operates directly on T instead of "Svix'-.

400. Ex. 1. If we change the co-ordinates in Lagrange's equations from 0, <f>,
&o.

to any others x, y, which are connected with 6, 4>, &c. by equations which do not

It ife)
^^^^- ^^ *^«^«^«^^ «^*'*^*'* ^'^ *^^ '"^''^^ ^"^

!

'''

It (S) ^^ "^ **'•! ^' *°*

dT
this ia shown to be -yr: dtdO.

20—2
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contain differential coefficients with regard to the time, show by an analytical

transformation that the form of Lagrange's equations is not altered, i.e. the trans-

formed equations are the same as the original ones with x, y, &c. written for

6, <f>,
&c. This is of course evident by Dynamics.

Ex, 2. If two sides h, c and the included angle A of any triangle be taken as

the co-ordinates 0, <}>, ^, prove that the Lagrangian equations are satisfied by

This easily follows from the last example by a change of co-ordinates.

401. Lagrange's equations for impulsive forces. To
deduce the general equations of motion for Impulsive forces.

Let 8f7j be the virtual moment of the impulsive forces pro-

duced by a general displacement of the system. Then from the

geometry of the system, we can express 8 Z^ in the form

The virtual moment of the momenta imparted to the particles

of the system is

2m {{x; - <) Bw + iy; - y,') By + « - <) Bz],

where {«;„',%, <), «, y^yZ^') are the values of {x, y', z^) just

before and just after the action of the impulsive forces.

Let 0^', ^/, &c. 6^', <^/, &c. be the values of 6',
<f>\

&c. just

before and just after the impulse, and let T^, T^ be the values

of T when these are substituted for 6' , <j)', &c. Then as in
(J/7T /J'T'\

-r^, — j-p ) B6.

The Lagrangian equations of impulses may therefore be written

dZ dT^^
d0, dd^

with similar equations for ^, and i/r, &c.

402. These equations are sometimes written in the convenient
forms

@-' ©;=<^.-
where the brackets enclosing any quantity imply that that

quantity is to be taken between the limits mentioned. Sometimes
when no mistake can arise as to what limits are meant, these

limits are omitted and only the brackets, with perhaps some
distinguishing marks, are retained.

When the quantity in brackets (as in our case) is a linear

function of the variables 6', (j)', &c. of the first order, another
meaning can be given to the expressions. The brackets may then
be said to mean that 6^ — 6^, <^,' - ^/, &c. are to be written for
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&,
(J)',

&c. after all other operations indicated within the brackets
have been performed.

403. If we compare this equation Avith the general principle
of Art. 283, viz, that the momenta of the particles just after an
impulse compounded with the reversed momenta just before are
equivalent to the impulse, we see that it will be convenient to

call ,j, the component of the momenta with regard to 6, a name

only slightly altered from that suggested in Thomson and Tait's
Natural Philosophy. More briefly we may say that the ^-com-

dT
ponent of the momentum is ;^- In the same way we may

define the 6 component of the effective forces to be ^ -t-, - —
dt dff dd

404. These equations for impulsive forces are not given by Lagrange. They
seem to have been first deduced by Prof. Niven from the Lagrangian equation

dt d& dd~ d9'

We may regard an impulse as the limit of a very large force acting for a very

short time. Let t^, t^ be the times at which the force begins and ceases to act. Let

us integrate this equation between the limits t—tQ to t=t^. The integral of the first

term is -r^, which is the difference between the initial and final values of -r-o .

dT
The integral of the second term is zero. For -j^ is a function of 6, <f>, &c., ff, ttl, &o.

do

which though variable remains finite during the time t^ - Iq. If A be its greatest

value during this time, then the integral is less than A (fj - Iq) which ultimately

rdT~\ti dU,
vanishes. Hence the Lagrangian equation becomes ;^ = ~^ • See a paper

in the Mathematical Messenger for May, 1867.

405. Examples of Lagrange's equations. Before pro-

ceeding to discuss some properties of Lagrange's equations, let us

illustrate their use by the following problems.

A body, two of whose principal moments at the centre of gravity are equal, turns

about a fixed point situated in the axis of unequal moment under the action of

gravity. To determine the conditions that tliere may be a simple equivalent

pendulum.

Def. If a body be suspended from a fixed point under the action of gravity,

and if the angular motion of the straight line joining to the centre of gravity be

the same as that of a string of length I to the extremity of which a heavy particle

is attached, then I is called the length of the simple equivalent pendulum. This is

an extension of the definition in Art. 92.

Let OC be the axis of unequal moment, A, A, C the prmcipal moments at the

fixed point, and let the rest of the notation be the same as in Art. 365, Ex. 1. Then

2T=A (6'^ + s.n-e^|^'^-) + C{>p' + f cos^)«,

TJ—Mgh cos 9+ constant,
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where h is the distance of the centre of gravity from the fixed point, and gravity

is supposed to act in the positive direction of the axis of z. Lagrange's equations

will be found to become

J-
(Ae^ - A sinfl (io&e\p+ Cyj/ {<!>'+ rj/ 0080) sin0= - Mgh Bind,

j^{G(<p'+rl/ eo8d)\=0,

^{C((p' + fco&e)coad + Aem^e\l/)=0.

Litegrating the second of Lagrange's equations we have

0' +^ C0Bd= n,

where n is some constant expressing the angular velocity about the axis of unequal

moment. See Art. 256. Litegrating the third we have

d\l/
CncoBd+A sm25-^=o,

where a is another constant expressing the moment of the momentum about the

vertical through 0. See Arts. 264 & 265. See also Art. 403.

There is an error, sometimes made in using Lagrange's equations, which we

should here guard against. If wj be the angular velocity about OC, we know by

Euler's equations, Art. 251, that Wg is constant. If n be this constant, the Vis Viva

of the body might have been correctly written in the form

2T=A{e'^+ sin« ^i^) + Cv?.

But if this value of T be substituted in Lagrange's equations, we should obtain

results altogether erroneous. The reason is, that, in Lagrange's equations, all the

differential coefficients except those with regard to t are partial. Though Wg is

constant, and therefore its total differential coefficient with regard to t is zero, yet

its partial differential coefficients with regard to 0, <(>, &c. are not zero. In writing

down the value of T, preparatoiy to using it in Lagrange's equation, no properties

of the motion are to be assumed which involve differential coefficients of the co-

ordinates. This has been already indicated in Art. 396. But we must introduce

into the expression any geometrical relations which exist between the co-ordinates

and which therefore reduce the number of independent variables.

Instead of the first equation, we may use the equation of Vis Viva, which gives

AUvd?
^(syH^ov^-*-'"^^'^'-

To find the arbitrary constants a and /3 we must have recourse to the initial

values of 6 and ^. Let ^o. fo» "jt . X° be the initial values of d, -d/, —
, ^,at at Qt 0,%

then the above equations become

These equations, when solved, give d and ^ in terms of t, and thus determine

the motion of the line OG. The corresponding equations for the motion of the

simple equivalent pendulum OL are found by making C=0, A=M1?, and ft=/,

where I is the length of the pendulum. These changes give
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dt " dt

.(2).

In order that the motions of the two lines OG and OL may be the same, the two
equations (1) and (2) must be the same. This will be the case if either Cn=0, or

= 9^. In the first case, we must have n= 0, or C=0, so that the body must either

have no rotation about OG, or else the body must be a rod. In the second case,

we must have throughout the motion 6 and rj/ constant, so that the body must

be moving in steady motion making a constant angle with the vertical. In either

case, the two sets of equations are identical if Mhl=A. This is the same formula

which was obtained in Art. 92.

406. Ex. 1. Show how to deduce Eulefs equations, Art. 251, from Lagrange^

equations.

Taking as axes of reference the principal axes at the fixed point,

We cannot take (wj , Wg, Wg) as the independent variables because the co-ordinates of

every particle of the body cannot be expressed in terms of them without introducing

differential coefficients into the geometrical equations. See Art. 396. Let us

therefore express w^, Wj, Wj in terms of d, 0, ^p. By Art. 256, we have

Wi= 6' sin (p - xj/ am 6 cos<f))

(>}^=d'cos<p+ \p' sin ^ sin
]

0)3=0' + ^' cos

As it will be only necessary to establish one of Euler's equations, the others follow-

ing by symmetry, we need only use that one of Lagrange's equations which gives

the simplest result. Since <j)' does not enter into the expressions for Wj, Wj, it will

be most convenient to use the equation

d dT_dT_dI/
dt d<p' dtp~ d<p'

be seen by differentiating the expressions for wi, Wg. Also by Art. 340, if 2*^ be

. , ^ dU ,^

the moment of the forces about the axis of o, ^=-"'

Substituting we have | {(70,3) -{A-B) w,w,= N, which is a typical form of Euler'fl

equations.

Ex. 2. A body turns about a fixed point and its vis viva is given by

2T= Aujj^ +Bwi + Cwg^ - 2DW2W3 - 2Ew^Wi - 2F«iW2 •

Show that if the axes are fixed in the body, but not necessarUy principal axes,

Euler's equations of motion may be written in the form

d dT dT dT
J

dt dwi dw2 ^"3

with two similar equations. This result is given by Lagrange.
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407. Ex. Deduce the eqiiation of Vis Viva from Lagrange's equations.

If the geometrical equations do not contain the time explicitly, T is a homo-

dT dT
geneons function of 6', ^', &c. of the second degree. Hence 2T=-r-,d'+ j- <(>'+..

.

do (Up

Differentiating this totally, we have 2^ = 5'^ idp) "^ M ^' '^ **'"'

where the &c. implies similar expressions for <p, xp, &c. If we now substitute on

the right-hand side from Lagrange's equations, we have

„dr dT^ dT „„ dU„, ,

^rt = de^'-d^'^T8'+''''

dT dT dT
But since T is a function of 6, &, ^, 0', &c., ^ = ^^' + ^3?^'+ *<'•»

subtracting this from the last expression we have -r- = ^^ +;rr'P+--

Integrating, we have the equation of Vis Viva T- U= h,

where h is an arbitrary constant, sometimes called the constant of Vis Viva.

408. Ex. As an illustration of the application of Lagrange's equations to

impulsive forces, let us consider the example already discussed in Art. 176.

Let X be the altitude of the centre of gravity of the rhombus at any time, then x

and a may be taken as the independent variables.

We have T=2 {«'»+ (*!' +a^ o"}.

Let P be the impulsive action between the rhombus and the plane, then the

virtual moment of the impulsive forces is

SU=PS(x-2a cos a)

=

P8x+ 2a sin a P8a.

The Lagrangian equations are therefore by Art. 401

4.(x,'-Xo')=P

4 (A;2 + a2)(oi' - oo') = 2aP sin aj

Now the initial and final values of x' are a^' = - F, Xi = - 2a sin aw ; those of a'

are ao'=0» ai'=w. Hence eliminating P we have

,3V sin a

.}

'2 a l + Ssin^a'

which is the same result as in Art. 176.

If we wish to avoid introducing the impulse into the Lagrangian equations we

must choose such co-ordinates that the variation of one, the other being constant,

will not alter the point of application of the blow. This will be the case if we

take as co-ordinates a and the ordinate y of the point A which strikes the plane.

We then find

r=2 {y'2_4a miay'a'+ il^+a^+U^ sin«a)a'2}.

(s);-The single equation required is now [-r~,) =0 so that it is uimecessary to calculate

U. The limits of y' are 2/0'= -V,yi=0; those of a' are the same as before. The

value of w' follows without difficulty.

409. Sir W. R. Hamilton has put the general equations of

motion into another form, which is sometimes more convenient for

investigating the general properties of a dynamical system. This

transformation may be made to depend on the following lemma.
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410. The Reciprocal Function*. Let T^ he a function of
any quantities which it will he presently found convenient to call

B' , d>\ <&c. Let

d^' "' df '^''^^•

then 0', (}>' <&c. may he found in terms of u, v, d&c. from these equa-
tions. Let

T^=-T^ + u(9' + vf + &C.

and let T^ he expressed in terms of u, v, £;c., the quantities 6', ^\ dec.

being eliminated. Then will

dT dT

du dv ^

It may he that T^ is a function of some other quantities which it

will presently he found convenient to designate hy the unaccented

letters 0, <j), due. Then T^ will also he a function of these, and we
shall have

dT,^_dT, dT,__dT,
dd dO' dcf> d<f>'

To prove this, let us take the total differential of T^, we have

dT^ = -^^de + (-'^ + ujde'+e'du + &c,

By the conditions of the lemma the quantity in brackets

vanishes. Now if T^ be expressed as a function of 6, u,
(f>,

v, &e.

only, and not 6', <j)\ &c., we have

dT='^dd + '^'du + &c.
* dd du

* We may deduce from this lemma the method of solving partial differential

equations by reciprocation, sometimes called De Morgan's method. Let the partial

differential equation be {x, y, z^, p, q)=0, where p and 5 are the partial differential

coefiacients of z^ with regard to x and y. If we write Z2= -Zi+px + qy, we have

dz^ dz.

dp
the auxiliary equations

by the lemma x=^, y=~^. Hence this rule; substitute for x, y, 2, from
'' dp " dq

dz2 dz^ , ,

„dz2,^dZi

and treat p, q as the independent variables. Thus we have a new differential

equation which it may be more easy to solve than the former. Let the solution

be S2=/(2?, 2), then, by the auxiliary equations, x, y and z, have all been found m

terms of two independent quantities p and q. This method may be extended to

any number of variables and orders. Also as in Art. 418 we may if we please

modify the equation for some only of these variables.

Ex. If the differential equation be xp^ + yq^= Zi ,
show that

p „/p(l-g)\

'-1-P \q{i-p)J
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Comparing these two expressions for dT^ we have

dT^ dT^ ,dT^ .,^ =-#"^^-^= ^-

Thus we have a reciprocal relation between the functions T and

T^. We find T^ from T^ by eliminating 6', (\>, &c. by the help of

certain equations, we now see that we could deduce T^ from T^ by
eliminating u, v, &c. by the help of similar equations. We shall

therefore call T^ the reciprocal function of T^ with regard to the

accented letters 6',
<f)',

&c.

411. It should be noticed that if T^ be a homogeneous quadratic

function of the accented letters 6',
(f>\

&c., then u6^+V(f>'+&c.= ^T^,

and therefore T^ = T^, but differently expressed. Thus T^ ia a,

function of 6',
(f/,

&c. and not of u, v, &c., while T^ is a function of

u, V, &c. and not of ff,
<f>,

&c. We notice that in this case T^ is

a homogeneous quadratic function of u, v, &c.

412. If 2\ be the semi vis viva of a dynamical system, this

process is really equivalent to changing from the use of component
velocities to the use of the corresponding component momenta.
Either may be used to determine the motion of the system, some-

times the one and sometimes the other set is the more convenient.

413. Escamples on tlie Bedproeal Function. Ex. 1. The position in space

of a body of mass M is given by x, y, z, the rectangular co-ordinates of its centre of

gravity, and 0, <p, xp the angular co-ordinates of its principal axes at the centre of

gravity as used in Chap. v. Art. 256. If two of its principal moments of inertia are

equal, and if |, i], f, u, v, w be the components of the momentum corresponding

respectively to x, y, z, 6, <p, xp, then the vis viva 2Ti is given in Art. 365, Ex. 1.

Show that the reciprocal function is

Ex. 2. If the vis viva 2Ti be given by the general expression

2Ti=Aue'^+ 2Aj2e'<p'+...

show that the reciprocal function of Ti may be written in the form

1 u V
a— 2A u All Ai, ...

V A^ A^ ...

where A is the discriminant of T-^ . Thus the coefficients of «*, r', 2uv, &o. in Tj

are the minors after division by 2A of the corresponding terms in T^. See also

Chap. I. Art. 28, Ex. 3.

Ex, 3, If ^, ri, &G. be partial differential coefficients of a function P of x, y, &c.

with regard to those variables respectively, prove that x, y, &o. are also partial

differential coefficients of a function Q of f, ri, &g. with regard to these variables

respectively. If P be homogeneous and of n dimensions prove also that Q = {n-l)P.
Thus P might be the potential function in Attractions, or the velocity potential in

Hydrodynamics.
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Ex. 4. Eegarding Tj as a function of ff, 4>', &c., let A be the Hessian of Tj,

i.e. the Jacobian of its first differential coefficients with regard to ff,
<f>',

&c. Then
d^T d?T

will -j-^ , -^-~ , &c. be equal to the minors of the corresponding constituents of

the determinant A, each minor having its proper sign and being divided by A.

To prove this, we take the total differential of the two sets of equations,

dT dT
u= -37^, &c., ff=^, &c. From the first set we find dO', dd>\ &c. in terms of

aO du

du, dv, &o. Substituting in the second set the theorem follows at once.

414. The Hamiltonian Transformation. Let us put

L= T+ U so that L is the difference between the kinetic and

potential energies. Then, as explained in Art. 399, L is called the

Lagrangian function and the Lagrangian equation may be written

in the typical form
d dL _ dL
dtdd'~dd'

there being corresponding equations for all the co-ordinates.

Let H be the reciprocal function of L, then H is called the

Hamiltonian function. The equations of transformation are

_dL_dT
'^~d9'~ dd'

with similar equations for all the co-ordinates. We have by the
JTT

reciprocal property & --t-\ and by Lagrange's equation we have

y;= §^ =-— , with similar equations for all the co-ordinates.

dd dd
Thus the single typical Lagrangian function written down above

is transformed into the two Hamiltonian equations

^ dH ,_ dH
^=d^' ""-

dO'

There are of course similar equations for all the co-ordinates.

When the geometrical equations do not contain the time ex-

plicitly, 2" is a homogeneous quadratic function of {ff,
<f> ,

&c.), and

therefore uO' + v<f>' + &c. = 2T. Hence

H=-L + ud' + v(i>' + &c. = T- U..

Thus H is the sum of the kinetic and potential energies, and

is therefore the whole energy of the system.

415. To express the Lagrangian equations of impulses in the

Hamiltonian form. ,
.

Referring to Art. 402 we see that the Lagrangian equations ot

motion may be written in the typical form
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Let H be the reciprocal function of T, and let us replace u, v,

&c. by P, Q, &c. Then these equations take the typical form

416. Examples on fhe Hamiltonian Equations. Ex. 1. To dedace the

equation of Vis Viva from the Hamiltonian equations.

Since fl" is a function of {6, <p, &c.), (u, v, &c.) we have, if accents denote total

differential coefficients with regard to the time,

dt de du
"'^"'^-

dt
'

so that the total differential coefficient of H with regard to t is always equal to the

partial differential coefficient. If the geometrical equations do not contain the

time explicitly, this latter vanishes and therefore we have H=h, where ft is a con-

stant.

Ex. 2. To deduce Euler's equations of motion from the Hamiltonian equations.

Taking the same notation as in the corresponding proposition for Lagrange's

equations, Art. 406, we have

dT dT
u=^,=Auiaia<p-i-B()).2Coa4), v=j—,= Cbj^,

dT
w= V7,= ( - ^wi cos + Ba>2 sin 0) sin + Ccoj cos tf.

Before we can use the Hamiltonian equations we must by Art. 411 express T in

terms of (u, v, w). To do this we solve these equations to find Wi, wj, Wj in terms

ofu, 17, to. We find .4«i=usin<^ + (t>cosd-w)^—f

,

• sin a

T. . / /,
\Sin0

Bw«=MCOS0-(VCOS5-«?)-r—^." ^ ^ ' sm ^

Also by Art. 414 H=\{A<a^+Bu)i^-^Cb}i^) - U.

As we only require one of Euler's equations, let us use jt= - «', -j- = ^'.
a<p dv

The former of these gives A<ai^ + Bw^ -y^ - -3-^ = -C -^,
d<p d<p dip dt

which is the same as Awi -p - 5w»~ - -r;-= -C ~,
A ^ B d(t> dt

'

and this leads at once to the third Euler's equation in Art. 251. The latter of the

two Hamiltonian equations leads to one of the geometrical equations of Art. 256.

Thus the six Hamiltonian equations are equivalent to all the three dynamical and
the three geometrical Eulerian equations.

Ex. 3. A sphere roUs down a rough inclined plane as described in Art. 144.

We have T=^^maW^ and XJ—mgad sin a. Is it correct to equate H to the difference

of these functions ? Verify the answer by obtaining the equations of motion given

in Art. 144.

Ex. 4. A system being referred to co-ordinates d, ^, &c., and the corresponding

momenta u, v, <&c. in the Hamiltonian manner, it is desired to change the co-
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ordinates to x, y, &o. where 6, 0, &c. are given functions of x, j/, &o. Show that

if f, 7], Ac. be the corresponding momenta, then

^=u9y. + v<py.+ ... n = udy + v4>yr ... &c.=&c.

where the suffixes as usual denote partial differentiations. Show also by a

purely analytical transformation that the Hamiltonian equations with 6, u, Ac.

change into the corresponding ones with x, ^, &c.

Ex. 5. The Lagrangian fvmction is a function of 6, <p, &c. and 0', tp', &c. In

what precedes we have taken its reciprocal function with regard to 6", <(>', &c. , but

we might also have taken its reciprocal function with regard to d, (p, &c. The

following example will illustrate this.

Let Ti, or L, be the Lagrangian function, and in order to keep the notation as

clT (IT
nearly the same as possible, let U=-t-^, V = -^, &c. Then if Tg be the reciprocal

ad dcf>

function of Ti , the transformation corresponding to Sir "W. Hamilton's leads to the

. , ,. . dTs ^^ d dTs
typical equations

^^rff/ It dd'

'

To show this, it will be sufficient to notice that rs= - ri+ U'^^- F^+ ...

dT^__dT dT^

dff~~ dd'
^° dV'

Then by the lemma in Art. 410 we have ^J= - ,„, and ',jt=d, whence the results
*' /1h' nH' riTJ

follow at once by Lagrange's equations.

417. The analogy to reciprocation in Geometry. The Hamiltonian trans-

formation of Lagrange's equations bears a remarkable analogy to the transformation

by Eeciprocation in Geometry. Thus suppose the system has three co-ordinates

0, <p, \p, and let the semi \'is viva Tj be a homogeneous quadratic function of the

velocities 6', ^', ^. We may regard ff, ^', f as the Cartesian co-ordinates of a

representative point P, the position and path of which will exhibit to the eye the

instantaneous motion of the system. These co-ordinates of P may be found from

Lagrange's equations. Li the same way we may regard the Hamiltonian variables

u, V, w as the Cartesian co-ordinates of another point Q whose position and path

will also exhibit the instantaneous motive of the system.

Taking any instantaneous values of 6, (p, yp the point P will lie somewhere on

the quadric Ti=TJ where TJ is the instantaneous value of the force function. Then

since m =— v =^ «; =—^ we see that Q will also lie on a quadric which is

dd' ' d^' di/

the polar reciprocal of the quadric T^ with^egard to a sphere whose centre is at

the origin, and whose radius is equal to ^2U.

Let this reciprocal quadric be T^= U. Then since these quadrics possess recipro-

, dT„ ^, dT^ ,,_dTi
cal properties we see that ^ =-^^ > 'P^'dv ' ^ 'Hw'

Ex. 1. n the coefficients of the two quadrics T, and T, be functions of any

quantity 0, show geometrically that ^ = ^^ '^^'°'' ^'^''"" '^" "°'"°^'

, dH ,_dH _.^dfj
^Yiete

three of the Hamiltonian equations, viz. -m - ^ ,
-t' - ^^ . ^ '^^^

H= Ti - V. See the Author's essay on *' StabUity of Motion," page 62.

Ex. 2. Show that the form of T, as used in Geometry is the same as that

given Art. 413, Ex. 2.
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418. The Modified Lagrangian Function. Sir W. Hamil-
ton transforms all the accented letters ff, (})', &c. into the corre-

sponding letters u, v, &c. But we may also apply the Lemma to

change some only of the Lagrangian co-ordinates into the corre-

sponding Hamiltonian co-ordinates, leaving the others unchanged.

We should thus use a mixture of the two kinds of equations. With
one and the same function we can use Lagrange's equations with

those co-ordinates for which his equations are best adapted, and
the Hamiltonian equations with the remaining co-ordinates, if we
think his forms are preferable to Lagrange's.

419. To explain this more clearly let us consider a system de-

pending on four co-ordinates 6,
(f), ^, 77. Let Zj be the Lagrangian

function. Let us now suppose that we wish to use Lagrange's

equations for the co-ordinates ^, tj and the Hamiltonian equations

for the co-ordinates 0, (j>. To do this we use the two formulae of

trauvsformation -yrrj = u, -yrr = v, and we put
ad d^ ^

L^ = -L^ + ue' + v(l>'.

We have in consequence the two sets of Hamiltonian equa-

tions,

^~d^'
"*

—

Te'

, dL , dL.

We must now include ^', rf among the unaccented letters spoken

of in the Lemma of Art. 410, so that we have

dL^_ dL^ ^A_ ^A
dl'~~'W W W

with two similar equations for rj. Thus the two Lagrangian
equations for ^, 7} are still true if we replace L^ by L^ ; so that

we have the two sets of Lagrangian equations,

d dL,j, _ dL^ d dL^ _ dL^

dt~d^~~d^' dt~d7}'~ di)'

420. The function L^ might be called the modified Junction,

but it is more convenient to give this name to the function with its

sign changed. The definition may be repeated thus.

If the Lagrangian function i be a function of 0, 0',
(f>,

<j)', &c.,

then the function modified for (say) the two co-ordinates 0, ^
will be

L' = L-u0'-v(l>'

where u = -tk" '^ — JT" ^^^ ^^ suppose &, <f>'
eliminated from the
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function L'. Thus X is a function of 0, ^, 6\ ^ and all the other
letters, L' is a function of Q, 0, u, v and all the other letters.

These two functions L, L' possess the property (by Art. 410)
that their partial differential coefficients with respect to any letter;

except ff,
<f)',

u, V ; are the same. As regards these four we have

dL dL , dL' ., dL'
^, = ..,^, = .,and-^=-^,-^ = -</,.

We may form the dynamical equations for the co-ordinates with

regard to which the function has been modified by the Hamiltonian

rule, as if i^ = "~ L' were the Hamiltonian function, and for the re-

maining co-ordinates by the Lagrangian rule, as if either L^ or L'

were the Lagrangian function.

The function L^ may be also called the reciprocal function of

the Lagrangian function L^ with regard to the co-ordinates 6, <}>, &c,

because it is obtained from X, just as T^ is obtained from T, in

Art. 410, except that we only operate on such of the co-ordinates

as we please. It will however be convenient to use the two words

in slightly different senses. We shall use the word Reciprocation

when we change all the co-ordinates, and Modification when we

change only some.

The substance of this theory as given in Arts. 418 to 425 is taken from the

author's essay on " Stability of Motion."

421. To find a general expression for the modified Lagrangian function afUr

the necessary eliminations have been performed.

Let the vis viva 2T be given by the homogeneous quadratic expression

T=T0e^-^ + T9<t>e'4>' + ... + TiSj + Tei^^' + ->

so that the Lagrangian function is L^T+U, where 17 is a function of the co-

ordinates e,
<i>, ^, &c. We intend to modify L with regard to B, <p, &c., leaving

?, V, &c. to be operated on by Lagrange's rule. We therefore have according to

Art. 420 to eliminate d', <{>', &c. by help of the equations

Teee' + T6<t,(l>'
+...=u- Teir - '^»r,ri' - . .

.|

T04,0'+T^,l,<l>'+...=v-T,},l^'-T,l>r,v' + -> (!)•

&c. = &c. )

For the sake of brevity let us call the right-hand members of these equationa

u-X,v-Y, &c. Since T is a homogeneous function, we have

r=rfff +^1,^'?' + -
\ (2).

But by definition the modified function L'= -1-2 is

L'=L-ue'-v^'-...

(3).
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Solving equations (1) we find 6',
<f>,

&c. in terms of ^', t]', &e. by the help of

determinants. Substituting these values in the expression (3), we find

u-X,

v-Y,

Tee,

Te4„ Tu>

where A is the discriminant of the terms in T which contains only ff, </>', &c. It

may also be derived from the determinant just written down by omitting the first

row and the first column.

We may expand this determinant and write the modified function in the form

L'= Tff 1^+ T^^r,' + &C.+ U

2A
0, M, V, ...

w, Tee, Tei,, ... -i
V, Te^, T4>4„ ...

0, X, Y,

X, Tee, Te4„

Y, Tei„ T^,

0, X, Y,

u. Tee, Tei,,

dT dT
where u, v, &c. as usual stand for -r-; , -j-,, &c., and Z, Y, &o. stand for

au atp

X=Tei^ + Tey,v' + ..., Y=T^^^'+ T^r,v'+..., &c.=&c.,

so that X, Y, &G. may be obtained from u, v, &c. by omitting the terms which

contain 6', <))', &c., i.e. the co-ordinates to which we intend to apply the Hamiltonian

equations.

It should be noticed that the first of the three determinants in the expression

for U will contain only the momenta u, v, &c. and the co ordinate. The second

will not contain u, v, &c. but will be a quadratic function of ^', 17', &o. The third

will contain terms of the first degree in ^', 17', &c. but multiplied by the momenta

«, V, (fee.

422. Case of absent co-ordinates. In many cases of small

oscillations about a state of steady motion and in some other

problems the Lagrangian function L is not a function of some of

the co-ordinates as 6,
(f),

&c., though it is a function of their dif-

ferential coefficients 6',
<f>',

&c., at the same time it may be a

function of the other co-ordinates ^, rj, &c., as well as of their dif-

ferential coefficients |', 77', &c. When this occurs the Lagrangian
t1 (IT

equations for 6, <]>, &c. become -j: -^ = 0, &c. Integrating, we have

dL
= u,

dL
&c.

where u, v, &c. are absolute constants whose values are known from
the initial conditions. By the help of these equations we may find

0', <j)', &c. in terms of ^', r{, &c., so that the problem is really reduced

to that of finding ^, t], &c.

We may now simplify the process of finding these remaining
co-ordinates ^, 17, &c. by modifying the Lagrangian function so as
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to eliminate the variables ff, f, &c., and introduce in their place
the constant quantities u, v, &c. We lorite

L' = L — uO' — t'^',..^

and eliminate 6',
<f>',

&c. hy help of the integrals just found TJie
equations to find |, rj, &c. may he deduced from this by treatinq±L as the Lagrangian function.

"

423. When the si/stem starts from rest the modified function
will take a simple form. Suppose the Lagrangian function L to be
a homogeneous quadratic function of 9', 0', &c. Then referring to
the first integrals found above and remembering that the initial
values of 6', ^', &c. are all zero, we have

w = 0, v = 0, &c. = 0.

Thus the modified function 11 is equal to the original function, but
is differently expressed. The function X is a function of 6', <^', &c.,
the function L' is the value of L after we have eliminated the dif-
ferential coefficients 6', </>', &c. by help of the first integrals.

The result of the elimination can be deduced from Art. 421. The first and
third determinants are here zero. We have therefore

L'=T^^ ~ + T^r,^'7,' + &c. + U+~ 0, X, F,

X, Tee, Te,},,

Y, Te4>, T^,

We may deduce this expression from the Lagrangian function L by a simple rule,

viz. omit all the terms which contain the differential coefficients 6', </>', dx. to be

eliminated and add the determinantal teiin written doicn above.

424. Example of the Solar System. As an example let us consider the case

of three particles whose masses are nii, m-i, m^ mutually attracting each other

according to the Newtonian law and moving in any manner in one plane. Referring

these to any rectangular axes, their vis viva and force-function will be functions of

the six Cartesian co-ordinates and their differential coefficients. But we may move

the origin and turn the axes round the origin without altering the vis viva or force-

function. It follows that each of these functions is independent of three of the

co-ordinates, though it may depend on their differential co-ordinates with regard to

the time. We may therefore modify the Lagrangian function and make it depend

only on the three other co-ordinates.

The vis viva of the system is equal to the vis viva of the whole mass collected

at the centre of gravity together with the vis viva relative to the centre of gravity.

The former is easily written down and is in our case a constant : let us turn our

attention to the latter.

Let G be the centre of gravity, draw Ga, G^, Gy to represent in direction and

magnitude the velocities of the three particles, i.e. let o, ^3, y trace out their

hodographs. Then the sides of the triangle a, /3, y represent the relative velocities

of the particles, and the vis viva of the system is represented by ?H,Ga--t- m^G/J^-f mjC-y^.

Since the momentum of the system relative to its centre of gravity resolved in any

direction is zero, it follows that G is the centre of gravity of three particles

R.D. 21
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i>h.fiih)iH placed at a, /3, 7. By a well known property of the centre of gravity we

have TTiiWi^ (aj3)2 + =/t{mi{Ga)' + ...},

where
fj.

is the sum of the masses. It immediately follows that the

vis viva of any system relative to its centre of gravity=—1^ "
,

where Via is the relative velocity of the particles »%, ikj. This result is evidently

tme for any number of particles. This formula for the relative vis viva was

obtained by Prof. Ball by an analytical demonstration in the Astronomical Notices

for March, 1877.

Let a, 6, c, A, B, C be as usual the sides and angles of the triangle formed by

joining the particles. Let be the angle the side c makes with any straight line

fixed in space. Let accents as usual denote differential coefficients with regard to

the time. Then we have

Thus if 2r be the vis viva relative to the centre of gravity, we have

2T=Pd'^+ iQd'+ B,

where P, Q, i2 are functions only of the triangle, and not of 0. We have

(jlP= JBiniac'+ miiiiib^+ nvim^'^

(iQzz Tn, {mtb^A' - m^W)
fiB= nhrriiC'^+ minis (6'»+ b^A '*) + maWij (a'^+ a»B'»).

How we shall express these must depend on the co-ordinates we wish to use. Thus

we might choose any three parts of the triangle except the three angles as the co-

ordinates.

Ex. Supposing it to be convenient to choose the distances b and c of two of the

particles from the third, and the angle A subtended by those two at that third

particle as the co-ordinates of the triangle, show that P, Q, R may be expressed in

terms solely of b, c, A and their differential coefficients by the help of the following

results a2=6'+ c*-26ccoSi4,

^ (6c sin ^)= VA'+ a^B'+ 26c' sin ^,

a'a-i- o«£'a=6'« + c'» - 26^ cos A + 6»^'«-|-26 sin AA'</.

These admit of easy geometrical demonstrations.

425. We may also modify the Lagrangian function with regard to 0. To do

dT
this we put u= -r^,= P0'+ Q. We notice that since the force-function U is not

uu

a function of 0, u is by Art. 422 an absolute constant. We now form the modified

function

This function may now be used as if it were the Lagrangian function to find any

changes in the triangle joining the three particles.

We may also notice that the angular velocity in space of the side of the triangle

joining wii, mj is given by the equation

Pe' + Q = u,
I

where 6' is the angular velocity required and u is a constant.

Ex. 1. Show that P is equal to the moment of inertia of the three particles

about the centre of gravity.

i

'
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Ex. 2. Show that n? (PR - Qf may be written in the symmetrical form

{ mim^c^ + v^injy^ + m^m-^a-
} {

m^m.^"^ + m.vmjj'- + m^m-^a"^
}

+ i)hm.vii {;«! {hcA')^ + vh[caB'f+ jn, (ahC')-\.

Ex. 3. Show that the quantity u is equal to the angular momentum of the
system about the centre of gravity. See Arts. 397 and 403.

Ex. 4. Show that we may take for ixQ either of the formula m^ (m./:"-B' - m.J)"-C'),

or Tii^im^a^-C'-m^cW), the effect of which is to add to the Lagrangian function L' a
quantity equal to B' or C" respectively. See Art. 400.

426. iron-Conservative Forces. To explain how Lagrange's equations are to

be used when some of the forces are non-conservative.

Lagrange's equations in the form given in Art. 399 can only be used when the
forces which act on the system have a force-function. If however P8d be the
virtual moment of the impressed forces obtained by varj-ing 6 only, Q5(p the vir-

tual moment obtained by varying only and so on, it is clear that Lagrange's

equations may be written in the typical form ,
- — =P.

dt dd dd

427. It will often be convenient to separate the forces which act on the system

into two sets. Firstly those which are conservative. The parts of P, Q, &c. due to

these forces may be found by differentiating the force-function with regard to 6, <(>,

&c. Secondly those which are non-conservative, such as friction, some kinds of

resistances, &c. The parts of P, Q, &c. due to these must be found by the usual

methods given in Statics for writing down virtual moments.

Though these non-conservative forces do not admit of a force-function, yet

sometimes their virtual moments may be represented by a differential coefficient of

another kind. Thus suppose some of the forces acting on any particle of a body to

be such that their resolved parts parallel to three rectangular axes fixed in space are

proportional to the velocities of the particle in those directions. The virtual

moment of these forces is

2 {ixix'Sx + fiiiy'dy + iJLiZfdz),

where Ad A«2» /^s are three constants which are negative if the forces are resistances.

For example, if the particles be moving in a medium whose resistance is equal to

the velocity multiplied by a constant k, then /Hj, fu, ns are each equal to - k. Put

- J'= 2 2 (Mi^'2 + M-2J/'- + Ms^'-).

Since {x, y, z) are functions of e, 0, &c. given by the geometry of the system we

, dx dx ,

have, as in Art. 396,
df

'^
dd '"

with similar expressions for the other co-ordinates. Substituting we have J<'

expressed as a function of d,
<f>,

&c., 0', 4>\ &c. We also notice that as in Art. 397

:r^ = ^ . Differentiating F partially we have
da da

In this ca.e, therefore, if f ' be tlie foice-function of the conservative forces, F the

21—2



324 LAGRANGE'S EQUATIONS.

function just defined, 95^, ^S(p, &c. the virtual moments of the remaining forces,

Lagrange's equations may be written

d dT_dT_dU_dF
dt de' dd~dd dd'

'

vdth similar equations for
<f>, f, &c.

We may notice that if the geometrical equations do not contain the time

explicitly the function i^ is a quadratic homogeneous function of 0',
<f>',

&c.

If the forces whose effects are included in F be resistances, then /ii, n^i Mj> *C'

will all be negative. In this case F is essentially a positive function of the veloci-

ties, and in this respect it resembles the function T which represents half the vis

viva.

If we treat the equations written down above exactly as Lagrange's equations

are treated in Art. 407 to deduce the principle of Yis Viva we find

but in this case F also is a homogeneous function of ff, &c. Hence we find

^^{T - U)=e'e + &c. -2F.

We therefore conclude that if the geometrical equations do not contain the time

explicitly, and if there be no forces present but those which may be included in the

Potential function U and in the fxmction F, then F represents half the rate at

which energy is leaving the system, i.e. is dissipated.

The use of this function was suggested by Lord Eayleigh in the Proceedings of

the London Mathematical Society, June, 1873. The function F has been called by

bim the Dissipation function.

Ex. 1. If any two particles of a dynamical system act and react on each

other with a force whose resolved parts in three fixed directions at right angles are

proportional to the relative velocities of the particles in those directions, show that

these may be included in the dissipation fimction F. Ji V^., V^, F, be the com-

ponents of the velocities, niVx, Ma^»» Ms^, the components of the force of repulsion,

the part of F due to these is - ^S (yuiFx^+ztsFy^+ZisF,^. This example is taken

from the paper just referred to.

Ex. 2. A solid body moves in a medium which acts on every element of the

surface with a resisting force partly factional and partly normal to the surface.

Each of these when referred to a unit of area is equal to the velocity resolved in its

own direction multiplied by the same constant k. Show that these resistances may
be included in a dissipation function F,

where cr is the area; A, B, &c. the moments and products of inertia of the surface

of the body and (u, v, w) the resolved velocities of the centre of gravity of c.

428. Indeterminate Multipliers, &c. To explain how
Lagrange's equations can he used in some cases when the geometrical

equations contain differential coefficients with regard to the time. W\

It has been pointed out in Art. 396, that the independent

variables 0, <}>, &c. used in Lagrange's equations must be so
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chosen that all the co-ordinates of the bodies in the system can
be expressed in terms of them without introducing 6',

<f)',
&c.

But when we have to discuss a motion like that of a°body rolling
on a perfectly rough surface, the condition that the relative
velocity of the points in contact is zero may sometimes be ex-
pressed by an equation which, like that given in Art. 137, may
necessarily involve differential coefficients of the co-ordinates.
In some cases the equation expressing this condition is integrable.

For example; when a sphere rolls on a rough plane, as in

Art. 144, the condition is x — a& = 0, which by integration

becomes x — a9 = b where b is some constant. In such cases we
may use the condition as one of the geometrical relations of the

motion, thus reducing by one the number of independent vari-

ables.

But when the conditions cannot easily be cleared of differ-

ential coefficients, it will be often convenient to introduce the

reactions and frictions into the equations among the non- con-

servative forces in the manner explained in Art. 427. Each

reaction will have an accompanying equation of condition, and

thus we shall always have sufficient equations to eliminate the

reactions and determine the co-ordinates of the system.

The elimination of the reactions may generally be most easily

effected by recurring to the general equation of Virtual Velocities,

and giving only such displacements to the system as may make

the virtual moments of these forces disappear. Suppose, to fix

our ideas, a body is rolling on a perfectly rough surface. Let

e,
(f),

&c. be the six co-ordinates of the body, then by Art. 137,

there will be three equations of the form

L, = A^e' + B,^' + ...=0 (1),

the other two being derived from this by writing 2 and 3 for the

suffix. These three equations express the fact that the resolved

velocities in three directions of the point of contact are zero. The

equation of virtual velocities may be written (Art. 398)

f^^_f)a^ + &c. = ^8^ + &c (2),

[dtd0' ddj dd

where U is the force-function of the impressed forces. Since the

virtual moments of the reactions at the point of contact have been

omitted, this equation is not true for all variations ot 6/, <^, &c.,

but only for such as make the body roll on the rough surface

But the geometrical equations L„ L„ L, express the fact that

the body^roUs in some manner, hence hd, 8<^, &c. are connected

by three equations of the form

A,h6 + B,h<^-\-...=^ (3)-
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If we use the method of indeterminate multipliers* the equa-

tions of virtual velocities will be transformed in the usual manner
into

ddT dT_dU dL dX dL,

dt dd'~ dd~ dd^^ dff'^^ dd''^ dff ^
''

with similar equations for the other co-ordinates ^, i/r, &c. These

joined to the three equations L^, L^, L^ are sufficient to determine

the co-ordinates of the body and X, jx, v.

This process will be very much simplified, if we prepare the

geometrical equations L^, L^, L^ by elimination, so that one dif-

ferential coefficient, as 6', is absent from all but the first equation,

another, as
<f>',

absent from all but the second, and so on. When
this has been done, the equation for becomes

d dT_dT_dU dL^ ,..

dt d& dd~ dd'^ dff
^''

Thus \ is found at once. The values of fi and v may be found

from the corresponding equations for <^, i/r. We may then sub-

stitute their values in the remaining equations.

429. The method of indeterminate multipliers is really an
introduction of the unknown reactions into Lagrange's equations.

Thus let JJj, JSj, 7?3 be the resolved parts of the reaction at the

point of contact in the directions of the three straight lines used
in forming the equations Xj, X^, L^. Then Zj, L^, L^ are propor-

tional to the resolved relative velocities of the points of contact.

Let these velocities be /CjZ , kJL^, ^s^s- Then if 6 only be varied

the virtual velocity of jB^ is K^A^hO which may be written

K^ -T^ 86. Similarly the virtual velocities of B^ and R^ are

K^-j^Zd and K^—j^BO. Hence, by Art. 426, Lagrange's equa-

tions are

ddT_dT_dU jfdL p dL, dL,

dt dff dd ~ dd^ "'
' dff ^ "'^ dff

"^ '*'»
» dff

'

* If we multiply the geometrical equations (3) by X, fi, v respectively and sub-

tract them from (2) we get

Vd dT dT dU -rfLi dU dLf\^. -

^idt M'^e'dd'^W^W" de'y^=^-

Now there will be as many indeterminate multiples \, fi, v as there are geome-
trical equations (3) connecting the quantities 5tf, 5^, &c., i.e. there are as many
multipliers as there are dependent variations. By properly choosing X, /it, v the

coefficients of these variations may be made to vanish, and then the coefficients of

the independent variations must vanish of themselves. Hence the coefficient of

each variation in this summation will be separately zero.
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Comparing this with the equations obtained by the method of

indeterminate multipHers we see that \ fi, v are proportional to

the resolved parts of the reactions. The advantage of using the

method of indeterminate multipliers is that the reactions are

introduced with the least amount of algebraic calculation, and
in just that manner which is most convenient for the solution of

the problem.

430. The method of indeterminate multipliers may sometimes

be used with advantage when the geometrical equations do not

contain ff,
(f),

&c., but are too complicated to be conveniently

solved. Thus if /(«, ^, <^, . .
.
) =

be a geometrical equation, connecting 6,
(f),

&c., we have, as in

Art. 351,

This may be treated in the same manner as the equations

Xj, Xg, ig in the preceding theory. We thus obtain the equation

dtdff dd dd^ dO

with similar equations for j), ylr, &c.

431. Ex. Form by Lagrange's method the equations of motion of a homoge-

neous sphere rolling on an inclined plane under the action of gravity.

Let the axis of x be taken down the plane along the line of greatest slope and

let the axis of y be horizontal and that of z normal to the plane. Let (z, y, a) be

the co-ordinates of the centre of gravity of the sphere, 0, <p, f the angular co-ordi-

nates of three diameters at right angles fixed in the sphere in the manner explained

in Art. 256. Then, if the mass be taken as unity, the Yis Viva is by Art. 365, Ex. 1.

The resolved velocities parallel to the axes of x and y of the point of the sphere

in contact with the plane are to be zero. These give the conditions x'-ao>,-0,

y'+ aw,=0. By Art. 257 these conditions wiU be found to lead to the equations

Li=x' - a6' cos \p - acj) sin 6 sin r/'=0

Li=y' - ad' sin f+ atp' sin d cos ^=0.

Also if ^ be the resolved part of gravity along the plane, and C be any constant,

we have U=gx + C.

The general equation of motion is

d dT dT dU dLi dU
dt dq' dq dq dq dq

where q stands for any one of the five quantities x, y, 6, 4>, f- Taking these in

turn we have x"^g + \ y"=f^

^2 (^' +0Y sin 6)^- \a cos xp-fia sin f

iP^ ^^'+ ^' cos 6)=- \a Bine sin ^p + fu^ sine COS rl^
_

at
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The last equation shows that (j>' cosd-^-f is constant. From this we infer, by

Art. 257, that the angular velocity w^ of the sphere about a normal to the plane is

constant throughout the motion. Eliminating /n from the two preceding equations,

and substituting for ^" from the last we find

- — = 0"cos ^+ 0"sin^sin ^ + 0'^sin 0cos ^-^'^'sin ^+^^'costf sin^.

But this is — . In the same way we find - ^ =^ . Substituting these values of

X and /J. in the first two of Lagrange's equations we have

x"{a- + k^=a^g y"{a^ + i^)=0.

These are the equations of motion of a particle acted on by a constant force parallel

to the axis of x. The centre of gravity of the sphere therefore describes a parabola,

as if it were under a constant acceleration equal to ^g tending along the line

of greatest slope.

This solution is rather complicated, but this problem has been selected to

show how we may use Lagrange's equations as specially illustrating the remarks

made in Art. 428. So far as this particular problem is concerned a very simple and

short solution may be obtained by the ordinary processes of resolving and taking

moments. But for this we refer the reader to the chapter on the Motion of a

Body under any forces in the second part of this work.

EXAMPLES *.

1. Two weights of masses m and 2m respectively are cormected by a string

which passes over a smooth pulley of mass in. This pulley is suspended by a

string passing over a smooth fixed pulley, and carrying a mass 4m at the other end.

Prove that the mass 4m moves with an acceleration which is one twenty-third part

of gravity.

2. A uniform rod of mass 3m and length 21 has its middle point fixed, and a

mass m attached at one extremity. The rod when in a horizontal position is set

rotating about a vertical axis through its centre with an angular velocity equal to

-p . Show that the heavy end of the rod will fall till the inolination of the

rod to the vertical is cos"^ (Jn' + 1-1), and then rise again.

3. A rod of length 21 is constrained to move on the surface of a hyperboloid of

revolution of one sheet with its axis of symmetry vertical, so that the rod always

lies along a generator. If the rod start from rest, show that

r"" - 2ar'd' sin a+ a^tf'"+ sin^ a (r" + ^ Z^j ^-2+ 2^ cos a (r - r^) = 0,

{a2 + sin!'a(r2+ ^P)}(?'-asinar'=0,

where r is the distance measured along a generator from the centre of gravity to

the principal circular section, 6 is the excentric angle of the point in which the

generator meets this circular section, a is the radius of the circular section, and a

is the inclination of the rod to the hori^^ntal plane.

V

* Most of these examples are taken from the Examination Papers which have

been set in the University and in the Colleges.
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4. A ring of mass m and radius b rolls inside a perfectly rough ring of mass M
and radius a, which is moveable about its centre m a vertical plane. If ^, ^ be the

angles turned through by the rings from their position of equiUbrium, prove that

ae + i<p={a-b)yj/, Mae"—mb<p", (2Af+m) (a-6) ^'= -(ilf+m)(7sin^.

5. If I, m, n be the direction-cosines with respect to fixed axes of a rod moving

in any manner in space, and if V be the potential energy, prove that

I V dfi'^ dl)~m \ dt^ '^dmj ~n \ dt^'^ dn)

'

where I is the moment of inertia of the root about an axis through its centre per-

pendicular to its length. See Art. 430.

6. A particle of mass m moves in one plane, and its motion is referred to areal

co-ordinates x, y, z. If 2T be the vis viva, and F the potential energy expressed as

a homogeneous function of the areal co-ordinates, prove that

2T=-m {aY^+ bHd -V cH'y')

m{6V'+cV')-2^=m(cV+aV')-2|^=m(aY'+6V')-2^.

7. A heavy rod, whose length is 2a, slips down with its extremities in contact

with a smooth horizontal floor, and a smooth vertical wall; the rod not being

initially in a plane perpendicular to the wall. If 5 be the inclination of the rod to

the vertical, \p the inclination of the horizontal projection of the rod to the inter-

section of the planes, prove that

4^-5 (cos ^)=cot esec ^^(sinflcos^) --^,

4^ (sin ^ sin f) =:tan ^^ (sin e cos ^).

8. A particle moves under the action of two centres of repulsive force J?" and Q

tending from two fixed points, at a distance 2c from each other. Show that the

Lagrangian equations of motion may be written in the form

d dT_dT d dT_dT^p^^^
dt dX' d\ ' dt dix' d/i

where X and fi are the eUiptic co-ordinates of the particle referred to the fixed

2r \'^
, fi'^

points as foci, and
X^-u? ~\^-c^ <?- v?

'

9 If r be the polar co-ordinates of a particle of mass m which describes an

orbit under the action of a central force F tending to the pole, and «, t; be the cor-

responding momenta, prove that the Hamiltonian function is^=^ + 2^ + j
^'''•

Thence deduce the HamUtonian equations of motion uz^mr', v=mr*&',

7m^{u'+F)=v^, v'=0.

10 If a variation 5^ of any co-ordinate of a system have the effect of turning

dT
the system as a whole round some straight line, then ^ is equal to the angular

momentum of the system about that straight line. But if the variation se move

the system as a whole paraUel to some straight line, then^ is the linear momentum

paraUel to that straight line. See Arts. 397 and 403.



CHAPTER IX.

Small Oscillations.

Oscillations with One Degree of Freedom.

432. When a system of bodies admits of only one independent

motion and is making small oscillations about some mean position,

or some mean state of motion, it is in general our object to reduce

the equation of motion to the form

d?x „ dx ,

where x is some small quantity which determines the position of

the system at the time t This reduction is effected by neglecting

the squares of the small quantity x.

433. Meaning of the Terms. We suppose the equation to be obtained

by writing down the equations of motion of all the particles, and then eliminating

the reactions. Let us consider the case in which the system is displaced from a

position of equiUbrium. We represent the amount of displacement by some letter

X such that x being known the position of every particle can be deduced from the

geometrical conditions of the system. The displacement f of any particle m will

therefore be some function of x, and since the square of x is to be neglected in a

small oscillation we have by M'Laurin's theorem ^=G-\-Ux, where G and H are

some constants depending on the position of the particle in the system. The

effective forces on m will be (1) Hmx" along a tangent to its arc of oscillation, and

(2) a centrifugal force which has vix'^ in the numerator, and should therefore

be neglected. Here we have used accents as usual to denote differential coefficients

.with regard to the time. The effective forces will therefore contribute terms of the

form ^ to the differential equation.

Next let us consider the impressed forces on the system. These are of three

kinds

(1) The system being displaced the forces of the system will tend to bring it

back to its position of equilibrium, if this position be stable. These forces are

all functions of x, and since the square of x is neglected, they will contribute terms

of the form c-hx to the equation. The terms c-hx therefore represent the

natural forces of restitution,

(2) There may be some forces of resistance acting at special points of the

system which depend on the velocities of the particles. The velocity of any sucU
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particle m will be some function of ^', which, as before, may be taken eqnal to HJ.
dz

These resistances will therefore contribute terms of the form a t- to the equation.

(3) We may have some small external forces. These may be functions of the

time. We might, when they exist, represent them by a tenn/(0 on the right hand
side of the equation.

We see that the effective forces and the three kinds of impressed forces con-

tribute different kinds of terms to the equation, and since the products of these

terms are to be neglected these terms come exclusively from the sources mentioned.

We propose in the first instance to omit the external forces, and to consider the

motion of a system acted on only by the forces of restitution and the forces of

resistance. The oscillation produced by these two together is called the natural

or free vibration. The oscillations produced by the external forces are sometimes

called Forced Vibrations, and will be considered under that heading.

434, Solution of the Equation. It will generally happen

that a, b, c are all constants, and in this case we can completely

determine the oscillation. By putting « = t + fe'"^, we reduce the

equation to the well-known form

When b-a" is positive, let us, for the sake of brevity, put

l — a^ = n^. We then have

where A and B are two undetermined constants which depend on

the initial conditions of the motion. The physical mterpretation

of this equation is not difficult. It represents an oscillatory

motion. If we write for t, t+^-^, we have exactly the same

expression for a; with A, written for A, where ^i = ^|~'*
'

"^^

therefore infer that the time of a complete oscillation is—
.

The

central position about which the system oscillates is determined by

x=l. To find the times at which the system comes momentarily

to rest we put | = 0. This gives tan {nt + 5) = ^ The extent

of the oscillations on each side of the
^^ff,f^^^I^SoJTfn th'e

found by substituting the values of t given by this equation m the

expression for «.-|. Since these must occur at a constant in-

terval equal to ^, we see that the extent of the oscillation



332 SMALL OSCILLATIONS.

continually decreases, and that the successive arcs on each side of

the position of equilibrium form a geometrical progression whose
air

common ratio is e »'

When b — a^ is negative, we put b — a^= — i^. In this case the

sine in the solution must be replaced by its exponential value, and
the integral becomes,

where G and D are two undetermined constants. The motion is

now no longer oscillatory. If a and b are both positive, v is less

than a and in this case whatever the initial conditions may be,

X will ultimately become equal to v, and the system wiU con-

tinually approach the position determined by this value of x. The
same thing will occur if v be greater than a, provided the initial

conditions are such that the coefficient of the exponential which
has a positive index is zero.

If 6 — a" = 0, the integral takes a diflferent form, and we have

where E and F are two undetermined constants. If a be positive,

the system will continually approach the position determined by
bx = c.

435. When the value of x as given by these equations be-

comes large, the terms depending on x^ which have been neglected

in forming the equation may also become great. It is possible

that these terms may alter the whole character of the motion. In

such cases the equilibrium, or the undisturbed motion of the

system as the case may be, is called unstable, and these equations

can represent only the nature of the motion with which the system

begins to move from its undisturbed state.

436. Ex. 1. The mitial conditions of the system are such that

find the nltimate valae of x.

cPx dx
Ex. 2. Show that the complete integral of --r-+ 2a -n+ tajs/lt) ifl

x==e-''\xo'^+ xJooBnt + ^Bmnt\l
+^^

j'
e''^'-*'^

sin nit-f)/ {t')df,

•where Xq, Xq are the values of x and -r- when t=0. [Math. Tripos, 1876.]

437. It will be often found advantageous to trace the motion

of the system by a figure. Let equal increments of the abscissa
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of a point P represent on any scale equal increment, nf +1 .•
and let the ordinate represent the de'viatir Hh^'^ ordiLir;from Its mean value. Then the curve traced out In 11
sentative point P will exhibit to the eye t^'e thde n otion ITsystem. In the case in which a and /-

a'
a e both

' -V k'
curve takes the form

^'^ P*"''^'^^ ^^e

The dotted lines correspond to the ordinate + Ae'"'. The re-
presentative point P oscillates between these, and its path alter-
nately touches each of them. In just the same way we may trace
the representative curve for other values of a and h.

The most important case in dynamics is when a = 0. The
motion is then given by

c ,_

a;--~Asm{'vbt + B).

The representative curve, is then the curve of sines. In this

case the oscillation is usually called harmonic.

438. Ex. 1. A system oscillates about a mean position, and its deviation i8

measured by x. If Xq and Xq be the initial values of x and ^ , show that the

system will never deviate from its mean position by so much as j'
^"

.

'"^"^'^","^ "^"'

I

'

if b be greater than a^.

Ex. 2. A system oscillates about a position of equilibrium. It is required to

find by observations on its motion the numerical values oi a, b, c.

Any three determinations of the co-ordinate x at three different times will

generally supply sufficient equations to find a, b, c, but some measurements can

be made more easily than others. For examj^le, the values of x when the system

comes momentarily to rest can be conveniently observed, because the system is

then moving slowly and a measurement at a time slightly wrong will cause an

error only of the second order, while the values of / at such times cannot be

conveniently observed, because, owing to the slowness of the motion, it is diflicolt

dx
to determine the precise moment at which — vanishes.
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If three successive values of .a; thus found be x^, Xc,, x^, the ratio of the two

successive arcs x^ - x-^ and x^ - x^ is a known function of a and h, and one equation

can thus be formed to find the constants. If the position of equiUbrium is

unknown, we may form a second equation from the fact that the three arcs

x^ - - , x^- r, 353 - T also form a geometrical progression. In this way we find r

which is the value of x corresponding to the position of equilibrium.

The position of equilibrium being known, the interval between two successive

passages of the system through it is also a known function of a and h, and thus

a third equation may be formed.

Ex. 3. A body performs rectilinear vibrations in a medium whose resistance is

proportional to the velocity, under the action of an attractive force tending towards

a fixed centre and proportional to the distance therefrom. If the observed period

of vibration is T and the co-ordinates of the extremities of three consecutive semi-

vibrations are p, q, r; prove that the co-ordinate of the position of equilibrium and

the time of vibration if there were no resistance are respectively

^T&g "'d r jl + A ^
log f^)'p. [Math. Tripos, 1870.]

First Method offorming the Equations of Motion.

439. When the system under consideration is a single body,

there is a simple method of forming the equation of motion which

is sometimes of great use.

First, let the motion be in two dimensions.

It has been shown in Art. 205, that if we neglect the squares

of small quantities we may take moments about the instantaneous

centre as a fixed centre. Usually the unknown reactions will be

such that their lines of action will pass through this point, their

moments will then be zero, and thus we shall have an equation

containing only known quantities.

Since the body is supposed to be turning about the instan-

taneous centre as a point fixed for the moment, the direction of

motion of any point of the body is perpendicular to the straight

line joining it to the centre. Conversely when the directions of

motion of two points of the body are known, the position of the

instantaneous centre can be found. For if we draw perpendiculars

at these points to their directions of motion, these perpendiculars

must meet in the instantaneous centre of rotation.

The equation will, in general, reduce to the form

MTA^^^ — (^^^^^^^ ^^ impressed forces aboutN

df \ the instantaneous centre /

'

where 6 is the angle some straight line fixed in the body makes
with a fixed line in space. In this forumla Mk^ is the moment
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of inertia of the body about the instantaneous centre, and since

the left-hand side of the equation contains the small factor —
we may here suppose the instantaneous centre to have its mean or
undisturbed position. On the right-hand side there is no small
factor, and we must therefore be careful either to take the moment
of the forces about the instantaneous centre in its disturbed
position, or to include the moment of any unknown reaction which
passes through the instantaneous centre,

Ex. If a body with only one independent motion can be in equilibrium in

the same position under two different systems of forces, and if L,, L„ are the

lengths of the simple equivalent pendulums for, these systems acting separately,

then the length L of the equivalent pendulum when they act together is given by

1 _£ ^

440, Ex, A homogeneom hemisphere performs small oscillations an a perfectly

rough horizontal plane : find the motion.

Let C be the centre, G the centre of gravity of the hemisphere, N the point of

contact with the rough plane. Let the radius= a, CG = c, d= lNCG.

Here the point N is the centre of instantaneous rotation, because the pUne

being perfectly rough, sufficient friction will be caUed into play to keep N at rest.

Hence taking moments about N

(Jt?+GN'^)-^ = -9C. sine.

Since we can put GN=a-c in the small terms, this reduces to

{k^+[a-cY)^^,+gc.e=o.

. „ /k^ + (a-cy
Therefore the time of a small oscillation is = 27r^ —

2 , , _3
It is clear that P+ 0^= (rad.)^ of gyration about C=g a- and c-^a.

If the plane had been smooth, M would have been
J^J ^^^^^^^^f;,"? "j";

GM being the perpendicular on CN. For the motion of N is ^°; ?^°"-"^»

direction, because "he sphere remains in contact with the ?!-;• -^^^«
7^^^

of G is ;ertical by Art. 79. Hence the two perpendiculars G.V, ^M^eei^ m ^e

instantaneous axis. By reasoning similar to the above the time wiU be found

fe2

to be 27r ^ ,

eg
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441. Oscillations of Cylinders. A cylindrical surface of
any form rests in stable equilibrium on another perfectly rough

cylindrical surface, the axes of the cylinders being parallel. A
small disturbance being given to the upper surface, find the time of
a small oscillation.

Let BAP, B'A'P be the sections of the cylinders perpendicular

to their axes. Let OA, CA' be normals at those points A, A'

which before disturbance were in contact, and let a be the angle

AO makes with the vertical. Let OPG be the common normal
at the time t. Let G be the centre of gravity of the moving body,

then before disturbance A'G was vertical. Let A'G = r.

Now we have only to determine the time of oscillation when
the motion decreases without limit. Hence the arcs AP, A'P will

be ultimately zero, and therefore G and may be taken as the

centres of curvature of AP, A'P. Let p= OA, p = GA\ and let

the angles AGP, A'CP be denoted by ^, ^' respectively.

Let 6 be the angle turned round by the body in moving from

the position of equilibrium into the position B A'P. Then since

before disturbance, A'G and AO were in the same straight line,

we have = i CDE =<j)-\-<f)',
where GA' meets OAE in I). Also

since one body rolls on the other, the arc AP= arc A'P, :.
p<f)

= p'^'

,

^ P + P

Again, in order to take moments about P, we require the

horizontal distance of G from P; this may be found by projecting

the broken line PA' -\- AG on the horizontal. The projection of

PA' = PA' COS {a +0)=p(]) cos a when we neglect the squares of
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small quantities. The projection of A'G is rd. Thus the hori-

zontal distance required is (-^~ cos a- Ad
\p + p J '

If k be the radius of gyration about the centre of gravitv the
equation of motion is

o j,

If L be the length of the simple equivalent pendulum we
have

Jc' + r' pp'—
f— =

, , cos a — r.^ P + P ^

442. Circle of Stability. Along the common normal at
the point of contact A of the two cylindrical surfaces measure

a length AS = s where - = - + -, and describe a circle on AS as
^ P P

diameter. Let A G, produced if necessary, cut this circle in iV.

Then GN=s cos a — r, the positive direction being from N towards

A. The length L of the simple equivalent pendulum is given by

the formula

L . GN= (rad)^ of gyration about A.

It is clear from this formula, if 6^* lie without the circle and

* Let R be the radius of curvature of the path traced out by »8 the one

cylinder rolls on the other, then we know that B= --^ , so that all points with-

out the circle described on 4S as diameter are describing curves whose concavity

is turned towards A, while those within the curcle are describing carves whose

convexity is turned towards A. It is then clear that the equihbrium is stable,

unstable, or neutral, according as the centre of gravity lies within, without, or on

the circumference of the circle.

R. D. 22
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above the tangent at A, L is negative and the equilibrium is

unstable, if within L is positive and equilibrium is stable. This

circle is called the circle of stability.

This rule will be found very convenient to determine not only

the condition of stability of a heavy cylinder resting in equilibrium

on one side of a rough fixed cylinder, but also to determine the

time of oscillation when the equilibrium is disturbed. An ex-

tension of the rule to the case of rough cones and other surfaces

will be given further on.

443. It may be noticed that the preceding problem is per-

fectly general and may be used in all cases in which the locus of

the instantaneous axis is known. Thus p is the radius of curva-

ture of the locus in the body, p that of the locus in space, and a

the inclination of its path to the horizon.

If dx be the horizontal displacement of the instantaneous

centre produced by a rotation dd of the body, then the equation to

find the length of the simple equivalent pendulum of a body
oscillating under gravity may be written

k'^ + r^ ^dx
L ~ dS

''•

This follows at once from the reasoning in Art. 441. It may
also be easily seen that the diameter of the circle of stability is

equal to the ratio of the velocity in space of the instantaneous axis

to the angular velocity of the body.

Ex. 1. A homogeneous sphere makes small oscillations inside a fixed sphere so

that its centre moves in a vertical plane. If the roughness be sufficient to prevent

all sliding, prove that the length of the equivalent pendulum is seven-fifths of the

difference of the radii. If the spheres were smooth the length of the equivalent

pendulum would be equal to the difference of the radii.

Ex. 2. A homogeneous hemisphere being placed on a rough fixed plane, which

is inclined to the horizon at an angle sin~i {Ji, makes small oscillations in a

vertical plane. Shew that, if a is the radius of the hemisphere, the length of the

equivalent pendulum is ( -^ - ^j— ) a.

444. If the body be acted on by any force which passes through the centre of

gravity, the results must be slightly modified. Just as before the force in equi-

librium must act along the straight line joining the centre of gravity O to the

instantaneous centre A. When the body is displaced the force will cut its former

line of action in some point F, wliich we shall assume to be known. Let AF=f,
taking / positive when G and F are on opposite sides of the locus of the instan-

taneous centre. Then it may be shown by similar reasoning, that the length L of

the simple equivalent pendulum under this force, supposed constant and equal

to gravity, is given by —i^ =-^cos a - /^, where o is the angle theL p + p J + r'
^

direction of the force makes with the normal to the path of the instantaneous

centre.
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If we measure along tlie line AG & length AG' so that

expression for L takes the form
kHr-

A(,

1 1
I u

,„ + . ,,, then the
A(j Ar

= G'N. The equilibrium is therefore stable

or unstable according as G' lies within or without the circle of stability.

445. Oscillations of a body resting on two curves. Tiro pointi \, B of a

body are constrained to describe given curves, and the body is in equilibrium under

the action of gravity, A small disturbance being given, find the time of an o*ciUa-

tion.

Let C, D be the centres of curvature of the given curves at the two points A, B.

Let AC, BD meet in 0. Let G be the centre of gravity of the body, GE a perpen-

dicular on AB. Then in the position of equilibrium OG is vertical. Let i, j be

the angles CA, BD make with the vertical, and let a be the angle AOB. IM
A', jB'... denote the positions into which A, JB...have been moved when the body has

been turned through an angle d. Let ACA' = <(>, BDB'= (p'. Since the body may

be brought from the position AB into the position A'B' by turning it about O

through an angle 6, we have ^' ^ = ^' =g. Also GG' is ultimately pcrpen-
OA OB

dicular to OG, and we have GG'= 06 . 6. Also let x, y be the projectiong of OCf on

the horizontal and vertical through 0. Then by projections

xcosj + y sin J = distance of 0' from 0D = 0D .
<p',

* P

a; cos t-y sin i = distance of 0' from 0C=0C . 0;

_ OP Bin t . »' + Qg • BJnjj^^'

•*• ^~ "~
sin a

Now taking moments about 0' as the centre of instantaneouH rotation, we hare

f OD . OB sin i OC^OA sinj

\

= -<;^ 0G +-^^— g-^+ CA Bina;*
\^

BD

where k is the radius of gyration about the centre of gravity,

22—2
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Hence if L be the length of the simple equivalent pendulum, we have

**+ 0(?2 ^^ OB . OB sini OC . OA sinj=0G+ 1 .L BB sma AG sin a

CoK. If the given curves, on which the points A, B are constrained to move, be

straight lines, the centres of curvature C and B are at infinity. In this case, we

may put ^-j. = - 1, -r?,= - h and the expression becomes
BIJ AC

'^±^=OG-OB.^'-OA.'^.
L sma sma

If OA and OB be at right angles, this takes the simple form

where F is the projection on OG of the middle point of AB.

Ex. 1. A heavy rod AGB rests in equilibrium in a horizontal position within a

surface of revolution whose axis is vertical. Let 2a be the length of the rod,

p the radius of curvature of the generating curve at either extremity of the rod, i

the inclination of this radius of curvature to the vertical. Prove that if the rod be

slightly disturbed, so that it makes small oscillations in a vertical plane, the length

-., . , . :, , • ,. ap sin^ i cost (1 + 3 cot* i)
of the eqmvalent pendulum is equal to —— --.

. . .,
—— .

3 (a - p sm' i)

Ex. 2. The extremities of a uniform heavy rod of length 2a slide on a smooth

wire in the form of a parabola, whose axis is vertical, and whose latus rectum is

equal to 4c. If the rod be slightly displaced from its position of stable equilibrium,

2ac
prove that the length of the equivalent pendulum is —-. =-. provided a is greater

o (a — ^j
than 2c. Gains Coll.

Ex. 3. The extremities of a rod of length 2a slide upon two smooth wires

which form the upper sides of a square whose diagonal is vertical, prove the

length of the equivalent pendulum is ^a. Math. Tripos.

446. Oscillation wben patb of centre of gravity is known. A body oscillates

about a position of equilibrium under the action of gravity, the radius of curvature

of the path of the centre of gravity being known, find the time of oscillation.

Let A be the position of the centre of gravity of the body when it is in its

position of equilibrium, G the position of the centre of gravity at the time t. Then
since in equilibrium the altitude of the centre of gravity is a maximum or mini-

mum, the tangent at A to the curve ^G is horizontal. Let the normal GC to the
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curve at G meet the normal at A in C. Then when the oscillation becomes indefi
nitely small C is the centre of curAature of the curve at ^. Let Jti = ,, the angleACG =

\I/,
and let R be the radius of curvature of the cur^-e &t A.

Let be the angle turned round by the bodj in moving from the position of

equilibrium into the position in which the centre of gravity is at G; then — i« the

angular velocity of the body. Since G is moving along the tangent at G, the
centre of instantaneous rotation lies in the normal GC, at such a point O that

OG§=yeLoiG = %.:GO = %.dt dt do

Let MJc^ be the moment of inertia of the body about its centre of gravity, then
taking moments about 0, we have

{k^+OG^)'^^=-g.OG sin rf^.

Now ultunately when the angle is indefinitely small 1-= ^=9^
; ... thg

d do It

equation of motion becomes

,,„ ,
„ „,, d-^e OG^ ^

(k- + OG^)^^^=-g-^.e.

Hence if L be the length of the simple equivalent pendulum we have

447. Oscillations found by Vis Viva. When the system of bodies in motion

admits of only one independent motion, the time of a small oscillation may
frequently be deduced from the equation of Vis Viva. This equation will be one of

the second order of small quantities, and in forming the equation it will be neces-

sary to take into account small quantities of that order. Tbis will sometimes

involve rather troublesome considerations. On the other hand the equation will

be free from all the unknown reactions, and we may thus frequently save mach

elimination.

The method of proceeding will be made clear by the following example, by

which a comparison may be made with the method of the last article.

The motion of a body in space of two dimensions is ijiven by the coordinates x, y

of its centre of gravity, and the angle which any fixed line-in tlie body makes vith

a line fixed in space. The body being in equilibrium tinder tlie action of gravity it

is required to find tlie time of a small oscillation.

Since the body is capable of only one independent motion, we may express (*, y)

as functions of 6, thus
x= F(e), y=f{0).

Let Mk^ be the moment of inertia of the body about its centre of gravity, then the

equation of Vis Viva becomes

(sy^(S)*-'^(")*=-»-
where C is an arbitrary constant.

Let a be the value of when the body is in the position of equilibriam. and

suppose that at the time t, = a + <p. Then, by M'Laurin s theorem,

y=yo+yo'l>+yo" 2+-'
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where y^, y^' are the values of -^ , -j^ when 6= a. But in the position of equili-

brium y is a maximum or minimum; .•.
?/o'
= 0. Hence the equation of Vis Viva

becomes (x„'2 + B) {^X= C - gyo"<f>\

dx
where Xq is the value of -7^ when 6=a^, differentiating we get

dd

(^o" + i=')^, = -9yo"<t>-

If L be the length of the simple equivalent pendulum, we have

where for $ we are to write its value a after the differentiations have been effected.

It is not difficult to see that the geometrical meaning of this result is the same as

that given in the last article.

This analytical result was given by Mr Holditch, in the eighth volume of the

Cambridge Transactions. It is a convenient formula to use when the motion of

the oscillating body is known with reference to its centre of gravity.

Ex. The extremities of a rod slide on the circumference of a three-cusped

hypocycloid whose plane is vertical. The radius of the circumscribing circle is 3a,

and one of the cusps is at the highest point of the circle. Prove that the length of

the equivalent pendulum is ^a. College Exam.

448. Moments about the Instantaneous Axis. When a

body moves in space with one independent motion there is not in

general an instantaneous axis. It has, however, been proved in

Art. 225 that the motion may always be reduced to a rotation

about some central axis and a translation along that axis.

Let 7 be the moment of inertia of the body about the instan-

taneous central axis, H the angular velocity about it, Fthe velocity

of translation along it, M the mass of the body, then by the prin-

ciple of vis viva -I[l^ + ^MV^=U+C, where U is the force-

function, and C some constant. Differentiating we get

dt "^2 dt'^ n dt ~ ildt'

Let L be the moment of the impressed forces about the in-

stantaneous central axis, then L = 7^^- by Art. 340.
D,dt ''

Let j9 be the pitch of the screw-motion of the body, then
F=^n. The equation of motion therefore becomes

If the body be performing small oscillations about a position of

equilibrium, we may reject the second and third terms, and the
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equation becomes

If there be an instantaneous axis p = 0, and we see that we
may take moments about the instantaneous axis exactly as if it

were fixed in space and in the body.

Second Method offorming ihe Equations of Motion.

449. Let the general equations of motion of all the bodies be
formed. If the position about which the system oscillates be
known, some of the quantities involved will be small. The squares

and higher powers of these may be neglected, and all the equations

will become linear. If the unknown reactions be then eliminated

the resulting equations may be easily solved.

If the position about which the system oscillates be unknown,
it is not necessary to solve the statical problem first. We may by
one process determine the positions of rest, ascertain whether they

are stable or not, and find the time of oscillation. The method of

proceeding will be best explained by an example.

450. Ex. The ends of a uniform heavy rod AB of length 21

are constrained to move, the one along a horizontal line Ox, and the

other along a vertical line Oy. If the whole system turn round Oy
with a uniform angular velocity w, it is required to find the posi-

tions of equilibrium and the time of a small oscillation.

Let X, y be the co-ordinates of G the middle point of the

rod, 6 the angle OAB which the rod makes with Ox. Let R, R
be the reactions at A and B resolved in the plane xOy. Let the

mass of a unit of length be taken as the unit of mass.

R' -S

The accelerations of any element dr of the rod whose co

d^^ \d
ordinates are (^, rf) are ^ - &)'| parallel to Ox,

^j^

dicular to the plane xOy and ^|
parallel to Oy.

T (r<") FT^"-
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As it will not be necessary to take moments about Ox^ Oy, or

to resolve perpendicular to the plane x Oy, the second acceleration

will not be required. The resultants of the effective forces -^ dr

and -j^ dr, taken throughout the body, are 21 —j^ and 21 -J^ acting

at G, and a couple 2X1? -^ tending to turn the body round G. The

resultants of the effective forces a^^dr taken throughout the body

are a single force acting at (r = I (a* {x + r cos 6) dr = co'x . 21, and a
J ^l

couple * round G=
j

m' (x + r cos 0) r sin Bdr= a*, 21.^ sin cos 0,

the distance r being measured from G towards A,

Then we have, by resolving along Ox, Oy, and by taking

moments about G, the dynamical equatioTis

2l.~ = -R-\-(o'x.2l
]

2l.^ = -R^g.2l (1).

2l.1?.^=Rx-B:y-(ii\2l.^sm0cos0^

We have also the geometrical equations

x = lcos0, y = lsm (2).

Eliminating R, R', from the equations (1), we get

«^ - 2/^ +«^= 5'« - « ^y - « 3 sin ^ cos (3).

To find the position of rest. We observe that if the rod were
placed at rest in that position it would always remain there, and

that therefore -7^ = 0, 'jp ~ ^> '^n-^
— ^- This gives

P
gx — fo^xy — G>'^^ sin ^cos^ = (4).

o

* If a body in one plane be turning abont an axis in its own plane '«-ith an

angular velocity w, a general expresflion can be found for the resultants of the

centrifugal forces on all the elements of the body. Take the centre of gravity G as

origin and the axis of y parallel to the fixed axis. Let c be the distance of G from

the axis of rotation. Then all the centrifugal forces are equivalent to a single

resultant force at G
=/«" (c + «) dm=«*. Jtfic, since «= 0,

and to a single resultant couple

=/w= (c + j) ydm = u^/xydm, since y

=

0.
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Joining this with equations (2), we get = '^
, or sin ^ = •'

and thus the positions of equilibrium are found. Let any one of
these positions be represented hy 9 = a, x = a, y = b.

To find the motion of oscillation. Let x = a + x', y = 1 + W^

6 = a-\-6\ where x
, y\ ff are all small quantities, then we must

substitute these values in equation (3). On the left-hand side

d?x d?y (Pd
11 11 1 • , X . ,smee -^, -y^, -^, are all small, we have simply to wnte a, h, a,

for X, y, 6. On the right-hand side the substitution should be

made by Taylor's Theorem, thus

We know that the first term / (a, h, a) will be zero, because

this was the very equation (4) from which a, h, a were found.

We therefore get

But by putting ^ = a + ^' in equations (2), we get by Taylor's

Theorem x=-lsma. 6', y' = lcosa. 6'.

Hence the equation to determine the motion is

(i'+^')^ + (^^sina + |coTcos2a)^ = 0.

Now, if gl sin a + - ©T cos 2a = w be positive when either of the
o

two values of a is substituted, that position of equilibrium is stable,

and the time of a small oscillation is 27r^ —^ .

If n be negative the equilibrium is unstable, and there can bo

no oscillation.

If „2 > ?5[ ^ijgj.e are two positions of equilibrium of the rod. It

will be found by substitution that the position in which the rod i.s

inclined to the vertical is stable, and the other position unstable.

If «2<?£ the only position in which the rod can rest is vertical,

and this position is stable.

If n = the body is in a position of neutral equilibrium. To

determine the small oscillations we must retain terras of an onler

higher than the first. By a known transformation we have

fZ^V (Px d {pd0\

''jf-yde^dtKdt)-
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cPd
Hence the left-hand side of equation (3) becomes (^ + F) j-,

.

CLZ

The right-hand side becomes by Taylor's Theorem

-7-^ {gl cos a — ^ a)T sm 2x 1 -r—« + &c.

When n = 0, we have a = a" ^^^ '*'* ~
47 * M^^i'^o t^® neces-

sary substitutions the equation of motion becomes

Since the lowest power of ff on the right-hand side is odd
and its coefficient negative, the equilibrium is stable for a displace-

ment on either side of the position of equilibrium. Let a be the

initial value of ff^ then the time T of reaching the position of

equilibrium is

V gl JoVa*-^'**

put B' — a^, then

^^ /4]F+F) r #_ 1

V gl VoVl-<^**a*

Hence the time of reaching the position of equilibrium varies

inversely as the arc. When the initial displacement is indefi-

nitely small, the time becomes infinite.

This definite integral may be otherwise expressed in terms of the Gamma

function. It may be easily shown that / —j^— =-

—

~)~

.

451. This problem might have been easily solved by the

first method. For if the two perpendiculars to Ox, Oy at A and
B meet in N, N is the instantaneous axis. Taking moments
about N, we have the equation

(^ + k') ^2t = gl cos e - r^ o)' {I + rf sin ^ cos ^

4Z'
:=glcos6 —— w' sin 6 cos 6.

If we represent the right-hand side of this equation by /{O),

the position of equilibrium can be found from the equation /(a) =
and the time of oscillation from the equation
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452. Ex. 1. If the mass of the rod ^B is M, show that the magiiituae of the
couple which constrains the system to turn round 0,j with uniform angular velocity

IS M -— w-r sin 2^.
d at

Would the magnitude of this couple be altered if Ox or Oy had any mass?
Ex. 2. The upper extremity of a uniform beam of length 21 is constrained to

slide on a smooth horizontal rod without inertia, and the lower along a smooth
vertical rod through the upper extremity of which the horizontal rod passes : the
system rotates freely about the vertical rod, prove that if a be the inclination of the
beam to the vertical when in a position of relative equilibrium, the angular velocity

of the system will be
[^l^^y, and if the beam be slightly displaced from thU

position show that it will make a small oscillation in the time

[CoU. Exam.]

jy (seca + 3cosa)|^

In the example in the text the system is constrained to turn round the vertical

with uniform angular velocity, but in this example the system rotates freely. The
angular velocity about the vertical is therefore not constant, and its small variations

must be found by the principle of angular momentum.

Lagrange s Method offorming the Equations of Motion.

453. Advantages of the Method. We now propose to

state Lagrange's method of forming the equations of motion. This

method has several advantages. It gives us the equations of

motion free from all reactions, and is therefore specially useful

when we have to consider the motions of several bodies connected

together. It also gives us a larger choice of quantities which we may
take as co-ordinates. Again, as soon as we have written down the

Lagrangian function we may deduce from this one function all the

equations of motion instead of deriving each from a separate

principle. On the other hand, this function must be calculated so

as to include the squares of the small quantities. Now in small

oscillations we generally retain only the first powers of the small

quantities, so that when only a few equations are wanted, it will

often be more convenient to obtain these by resolving and taking

moments.

It will be seen, therefore, that this method is best adaptetl io

oscillations which have more than one degree of freedom. For

this reason we shall here state only the general mode of fornung

the equations of motion, so that we may be able to apply

Lagrange's method to the solution of problems. But we shall

postpone the theory of the method to the second part of this work.

454. The object of Lagrange's method is to determine the

oscillations of a system about a position of equHibnum. It does
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not apply to oscillations about a state of steady motion. We shall

assume, for the present, that the forces which act on the system
have a force function. We shall also assume that the geometrical

equations do not contain the time explicitly, and do not contain

any differential coefficient with regard to the time.

In Lagrange's method it is essential that the co-ordinates

'chosen should be such small quantities that we may reject all

powers of them except the lowest which occur. They should

-

therefore be so chosen that they vanish in the position of equili-

brium. But with this restriction they may be any whatever. Let
us represent them by the letters 6, ^, &c. Then if the system

oscillate about the position of equilibrium, these quantities will be
small throughout the motion. Let n be the number of these

co-ordinates. As before, let accents denote differential coefficients

with regard to the time.

Let 2T be the vis viva of the system when disturbed from its

position of equilibrium, then as in Art. 396 we may express T as

a homogeneous quadratic function of 0',
<f>',

&c. of the form

2T=A^^0^-\-2AJ'<l>' + A^r + &<^ (!)•

Here the coefficients ^„ &c. are all functions of 0,
(f),

&c. and we
may suppose them expanded in a series of some powers of these

co-ordinates. If the oscillations are so small that we may reject

all powers of the small quantities except the lowest which occur,

we may reject all except the constant terms of these series. We
shall therefore regard the coefficients A ^^ &c. as constants.

Let U be the force function of the system when disturbed from

the position of equilibrium. Then we may also expand U in a.

series of powers of 6, </>, &c. In this series, the terms contain-

ing the first powers will vanish because by the principle of virtual

velocities -j^ , tt , &c- all vanish in the position of equilibrium.

See also Art. 340. Hence we may put

2U=2U, + B^,0' + 2BJ(l> + &c (2),

where U^ is a constant, which is easily seen to be the value of U
in the position of equilibrium. It is necessary for the success of

Lagrange's method that both these expansions should be possible.

We have now to substitute these values of T and U in the n
Lagrange's equations

ddT_dT_dU
dtdO' dd dd ^ ^'

with similar equations for
<f), ylr, &c. Since the expression for T

does not contain 6,
<f),

&c., we have

dT ^ dT . . -^ = 0,^=0, &c. = 0.
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The n equations (3) therefore become

A/' + A.f' = ." = 5.^ + ^.</> + ... (4).

&c. = &c. J

These are Lagrange's equations to determine the small oscillations

of any system about a position of equilibrium.

455. Method of Solution. We have now to solve these

equations. We notice that they are all linear, and that therefore

6,
(f),

&c. are properly represented by a series of exponentials of the

form Me^\ But as we are seeking an oscillatory motion it will l)e

more convenient to replace these exponentials by their correspond-

ing trigonometrical expressions. These equations also do not

contain any differential coefficients of the first order. It will

therefore be found possible, on making the trial, to satisfy them
with the following trigonometrical forms

= M^ sin (pj; + a^) + M^ sin {p^t + a,) + &c.|

&c. = &c. J

which may be written in the typical form

^ = if sin {pt + a), <^ = iVsin {pt + a), &c. = «S:c.

If we now substitute in equations (4) we have

{A,y + 5,) M+ {A,y + BJN + &C. =
0]

{A^,p'+BJM+iA^p^+BJN+&c.=^0\ (6).

&c. &c. = Oj

Eliminating M, N, &c. we have the determinantal equation

A,,f + B,„A,,f + B,„&c. =0 (7).

&c. &c. &c.

This determinant it will be observed is symmetrical about the

leading diagonal. If there be n co-ordinates, it is an equation of

the n^ degree to find /. It will be shown in the second part ot

this work that all these values of^ are real.

Taking any root positive or negative, the equation (6) will

determine the ratios of N, P, &c. to M, and we notice that these

ratios will also all be real. If all the roots of the determinants

equation are positive, the equations (5) will give the whole motion

with 2n arbitrary constants, viz. i/,, 3/„ K-K and «.' ««•;;•"••

These have to be determined by the initial vahies of 0, <t>
Ac.

^
6', &c. If any root of the determinantal equation >«jj^g^^lf;^^^

corresponding sine will resume it^ exponential form, the coefhcient

being rationalized by giving the coefficient Man imaginary form.
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In this case there is no oscillation about the position of equili-

brium. The position is then said to be unstable.

It may be noticed that for every positive value of ']^ given by
the equation (7) there are two equal values of 'p with opposite

signs. No attention however should be here given to these

negative values of 'p. To prove this, we notice that the solution

of the linear differential equations is properly represented by a

series of exponentials. Now each sine is the sum of two ex-

ponentials with indices of opposite signs. Both these values of p
have therefore been included in the trigonometrical expressions

assumed for ^, d &c.

456. Periods of Oscillation. We see from (5) that each

of the n co-ordinates 6, cf), &c. is expressed in a series of as many
sines as there are separate values of J9^ Thus when there are

several independent ways in which the system can move, there

will be as many periods of oscillation. These are clearly equal to

— , — , &c. Generally we want only these periods of oscillation

Pi P2
and not the particular position the system may occupy at any
instant. In such a case we may in any problem omit all the steps

of the argument and write down the determinantal equation at

once. We then use the following rule. Express the force functian

U and the semi vis viva T as homogeneoits quadratic functions of
the co-ordinates 6, <j), &c. and their differential coefficients 6\ <^', ti&c.,

all powers above the second being rejected. Then, omitting the

accents in the expression for T and also the constant term in TJ,

equate to zero the discriminant of p*T + U. The roots of the equation

thus formed will give the required values of p.

The mode of using this rule in conjunction with the method of

Indeterminate Multipliers will be given in the second part of this

treatise.

457. Position of the system. If it be also required to find

the position of the system at any time, we must determine the
values of the constants. Referring to equations (6) we see that the

ratios of M, N', P, &c. for any particular trigonometrical term
in the solution (5) are the same as the ratios of the minors of the

constituents of any line we please in the Lagrange's determinant

(7). In these minors we of course substitute the value of p* which
belongs to the particular trigonometrical term we are considering.

In this manner all the constants are found except those which
occur in the series for any one co-ordinate. These remaining 2»
constants must be found from the initial conditions.

Ex. Show that when the determinant (7) is zero, the ratios of the minors of the

constitaents of any one line are eqaal to the ratios of the minors of the constituents

of any other line.
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458. Examples of Lagrange's Method. The foll.ui.H'examples will show how we may use Lagrange's method t^fi,^the small oscillations of a system. When only the peri,xls a erequired, the process may be summed up thus. Form the Ir-
pressionsfor T and V to the squares of small quantities and equate
to zero the discriminant o/p^T + U.

Ex 1 A rod AB, whose length is 2a and mass m, is suspended from a fuel
point by a string OA, the length of which is I. The rod oscUIate-s under -ravity
in a vertical plane, find the periods of the small oscillations.

Let e,
<t>

be the angles the string and rod make with the vertical Proceeding
as m Art. 147 we find that when powers of d and ^ higher than the second are
neglected

T=Jm{Z26>'2 + 2a;^'0' + (F + a2)0'2},

TJ=VQ-lvig{ld^ + a<t>'^).

Forming the discriminant of fT+ U, and dividing out the common factor m,
we have

pH^-gl alif- \ =0.

This quadratic gives two values of p^. If these be jj,^ and p.,\ we have

e= M^ sin (pj« + ttj) + M^ sin {p^t + a,),

Ex. 2. A smooth thin shell of mass 31 and radius a rests on a smooth inclincil

plane by means of an elastic string which is attached to the sphere, and to a pcj? at

the same distance from the plane as the centre of the sphere, and a particle of mtu**

m rests on the inner surface of the shell. In the position of equilibrium the strinR

is parallel to the plane, find the times of oscillation of the system when it in

slightly displaced in a vertical plane, and prove that the arc traversed by the

particle and the distance traversed by the centre of the shell from their positions of

equilibrium can always be equal if (il/ +m + 7HCOs o)(;Z = £a (1 + cosa) where E i«

the coefficient of elasticity of the string, I its natural length, and a is the iucliua-

tion of the plane to the horizon. Caius Coll.

Ex. 3. A three-legged table is made by supporting a heavy triangular lamina

on three equal legs ; the points of support being the angular points of the lamina ;

if the legs be equally compressible and their weights neglected, then the systt-m of

co-existent oscillations of the top will consist of one vertical and two angnlnr

oscillations about two axes at right angles in its plane, and the periods of the

latter are equal and double that of the former. St John's Coll.

Ex. 4. A bar .42? of mass vi and length 2a is hung by two equal elastic cord*

AC, BD which have no sensible mass, and have unstretched lengths /,. C and /)

are fixed points in the same horizontal line, and CD = 2a. Investigate the wnall

oscillations of the bar, when it is displaced from its position of equilibrium in tho

vertical plane through CD, and show that the periodic times of the horizontal and

vertical oscillations of the centre of gravity of the bar, and of the roUtional oscilla-

tions are those of pendulums of lengths I, I - Ig, J (I - lo) respectively, whore / U the

length of the cords when the system is in equilibrium. >'nt*i- Tnpo*.
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459. Principal Co-ordinates. To explain what is nieant

by the principal co-ordinates of a dynamical system.

When we have two homogeneous quadratic functions of any
number of variables, one of which is essentially positive for all

values of the variables, it is known that by a real linear trans-

formation of the variables we may clear both expressions of the

terms containing the products of the variables, and also make the

coefficients of the squares in the positive function each equal to

unity. If the co-ordinates 6,
<f},

&c. be changed into ^, tj, &c. by
the equations

= \^ + \v + &c.

<}) = fi,^+ fi^T] + &c.\

&c. = &c.

we observe that 6',
(f>',

&c. will be changed into f, ij', &c. by the

same transformation. Also the vis viva is essentially positive.

Hence we infer that by a proper choice of new co-ordinates, we
may express the vis viva and force function in the form

2r=r' + i7" + r+."l

These new co-ordinates ^, rj, &c. are called the principal co-

ordinates of the dynamical system. A great variety of other

names have been given to these co-ordinates ; such as Harmonic,
simple and normal co-ordinates.

460. When a dynamical system is referred to principal co-

ordinates, Lagrange's equations take the form

so that the whole motion is given by

^ = ^ sin (p^t + a,), i] = Fsm {p^t + a,), &c.,

where E, F, &c., a^, a,, &c. are arbitrary constants to be deter-

mined by the initial conditions and p' = — 6„, ^j* = ~ ^as'
'^^•

When the initial conditions are such that all the principal

co-ordinates are zero except one, the system is said to be per-

forming a principal or harmonic oscillation.

461. The physical peculiarities of a principal oscillation are

:

1. The motion recurs at a constant interval, i.e. after this

interval the system occupies the same position as before, and i.s

moving in exactly the same way.

2. The system passes through the position of equilibrium,

twice in each complete oscillation. For taking | as the variable

co-ordinate, we see that ^ vanishes twice while pj; increases by
27r.
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3. The velocity of every particle of the system becomes zero
at the same instant, and this occurs twice in every complete

oscillation. For ^- vanishes twice while pj; increases by 2'ir. These

may be called the extreme positions of the oscillation.

4. The system being referred to any co-ordinates, 6,
<f,,

yjr,

&c., which are all variable, the ratios of these co-ordiuates to each'
other are constant throughout the motion*. For referring to
the equations of transformation in Art. 459, we see that when ij, f
are all zero, and only ^ is variable,

-=^= =?.

462. Equal Roots in Lagrange's Determinant. When
some of the roots of the equation to find p^ are equal, we know by
the theory of linear differential equations that either terms of the

form (At + B) sin pt enter into the values of 6,
(f>,

&c., or else

there must be an indeterminateness in the coefficients M, X, &c.

given by Art. 455. Referring the system to principal co-ordinates

we see by Art. 460, that the first alternative is in general excluded.

If two values of ^^ were equal, ssi,y b^^ = b^, the trigonometrical

expressions for ^ and r] have equal periods, but terms which

contain i as a factor do not make their appearance. The physical

peculiarity of this case is that the system has more than one set of

principal, or harmonic oscillations. For it is clear that, without

introducing" any terms containing the products of the co-ordinates

into the expressions for T or JJ, we may change ^, rj into any other

co-ordinates ^^, rji, which make |' + »?' = li'
+ '?/, the other co-

ordinates ^, &c. remaining unchanged. For example we may put

^ = ^, cos a - 7;^ sin a and 77 = ^^ sin a -I- 77, cos a, where a has any

value we please. These new quantities i^, rjx^ ?. &c., will evidently

be principal co-ordinates, according to the definition of Art. 459.

One important exception must however be noticed, viz. when

one or more of the values of p are zero. If, for example, 6„ =

we have ^=At + B, where A and B are two undetermmed con-

stants. The physical peculiarity of this case is that the position

of equilibrium from which the system is disturbed is not solitary.

To show this, we remark that the equations giving the position

of equilibrium are ^^^= 0, ^= 0, &c.. where U has the value

given at the end 0/ Art. 459."^ These in general reynre that f

I &c. should all vanish, but if h,, = they are satisfied whatever

I may be, provided tj, f,
&c. are zero. These values of f must

* This property is mentioned by Lagrange, who on several oocaiuons om

principal co-ordinates though not the name.

23
R. D.
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however be very small, because the cubes of ^, 77, &c. have been
rejected. It follows therefore that there are other positions of

equilibrium in the immediate neighbourhood of the given position.

Unless the initial conditions of disturbance are such as to make
the terms of the form At + B zero, it may be necessary to examine
the terms of the higher order to obtain an approximation to the

motion.

Ex. A heavy particle of mass m rests in eqailibriam within a right circular

smooth cylinder whose generating lines are horizontal. If the particle be disturbed,

form Lagrange's equations of motion, and show that ^ere may be terms in their

solution of the form At+B.

463. Initial Motions. We may also use Lagrange's method
to find the initial motion of any system as it starts from a position

of rest. See Art. 199. As before we must choose as our co-

ordinates some quantities whose higher powers can be rejected. It

will be convenient to choose them so that they vanish in the

initial position. Just as in Art. 454 we have

2T= AJ' + 2^„^'f + AJ>^ + &c.

where A^^ &c. are functions of 0,
<f>,

&c. Since the system starts

from rest, 6',
<f>,

&c. will all be small quantities in the beginning of

the motion. If we reject all powers of 0',
(f>',

&c. except the

lowest which occur, we may regard A^^ &c. as constants whose
values are found by substituting for 0, cf), &c. their initial values.

Since the initial position of the system is not a position of

equilibrium, the first differential coefficients of U with regard to

0, ^, &c. will not be zero. Let the initial values of these diffe-

rential coefficients be B^, B^, &c. Then proceeding exactly as in

Art. 454 the equations of motion are

aj' + aj>' + ...=^b\ (1).

&c. =&c.)

From these equations we may determine the initial values of 0",

(f>",
&c.

If X, y, z be the Cartesian co-ordinates of any point P of the
system we may, by the geometry of the question, express these as

functions of 0, <^, &c., Art. 396. Thus suppose x =f {0, <f>,
Sec),

then we have initially since 0',
(f>'

are zero

with similar expressions for y and z. The quantities x", y", z" are
evidently proportional to the direction cosines of the initial direc-

tion of motion of the point P. In this way the initial direction of

motion of every part of the system may be found.



INITIAL MOTIONS. 355

464. initial Radius of Curvature. As explained in Art. 200, we Bometime-
want more than the initial direction of motion of any point P of the system
Suppose we want the initial radius of cur^-ature of tlie path of Bome point P We
must find the values of x", x'", &c., and then substitute in any of the fomiol*
given m Art. 200. If, as before, x=f(e, <p, &c.) we find by diflerentiatiou Uial
initially

^"=f0O"+U<}>"+...

x"'=f0e"'+fyci>"'+...

x""= 3 (/0e^"2 + 2/e<|,e'>" + . .
.
) +/9^"' +/^^"" + . .

.

where suffixes as usual indicate partial differential coefficients with respect to

e, 0, &c. If y = F{e,
<f>,

&c.) there are of course similar expressions for y", Ac, and
in three dimensions for z", &c. also.

If the point P be so situated that for every possible motion of the system it

can only begin to move in some one direction, we take the axis of x perpendicular

to that direction. We then have x"=0 for all initial variations of 6, <p, *c. It

follows that fg= 0, /^ = 0, (fee. = 0. Hence x'"= 0, and the value of x"" depends only

on e", 0", &c., and not on 6"", (p"", &c. It will therefore be unnecessary to differen-

tiate the dynamical equations (1) to find these lugher differential coefficients. The
axis of y being parallel to the initial direction of the motion of P, the value

of y" wiU be finite. Hence, taking the formula at the end of Art. 200, we find that

the initial radius of curvature p of the path of P is given by

(Fee"+F^<p"+...y-

465. In order to find the higher differential coefficients of 6, 4>, &e. when they

are required, it may be necessary to form the equations of motion (1) to a higher

degree of approximation. There can of course be no difficulty in retaining the first

few powers of 6, <p, &c. which occur on either side of the equation. After differen-

tiation we put zero for each of the quantities 6, (p, &c., 6', </>', &c.

But it will often be more convenient to use Leibnitz' theorem. We have

to substitute

2T=Jii^'2 + 2Ji./(/)'-t-...

in the Lagrangian equations, differentiate the results, and put 6 = 0, ^=0, d:c.=0

after the differentiations have been performed. Taking the first differential co-

efficient with regard to t we find ^"' = 0, 0"'= O, &c. Taking the second differential

coefficient of the ^-equation we find

where for the sake of brevity we have written

df2
" dd d<p^

which is evidently true initially. The other equations are formed m the same way.

466. Examples Of initial Motion. Ex.1. ^ smooth plane of mas«^U freely

moveable about a horizontal axis lying within it and passmg
^^^-^g^'^^Ti^

gravity, the radius of gyration of the plane about the axis bemg k. The^c bcu>«
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inclined at an angle a to the horizon, a sphere of mass m is placed gentlj on it. If

initially the centre of the sphere be in a vertical through the axis of the plane, and

h be its initial height above that axis, show that the angle <p which the initial

direction of motion of the centre makes with the vertical is given by

(Mi^ -f- mfe2) tan ^ =Mk^ cot a. Math. Tripos, 1879.

Ex. 2. n rods of lengths a^, a^ ... a„ are jointed together in one straight line

and have initial angular accelerations in one plane w^, Wj ... w„. If one end be

fixed, prove that the initial radius of curvature of the path of the free end is

(2aw)2
St John's Coll.

2aw2
*

Ex. 3. BC is a diameter of a sphere, and rods AB, CD are jointed at B and G
each equal in length to BC. A being fixed the system is held so that ABGD is a

horizontal straight line and then let fall. If the mass of each rod be equal to

that of the sphere the initial radius of curvature of the path of i> is |4I ^^-

St John's GoU.

The Energy test of Stahility.

467. Stability of equilibrium. The principle of the Con-

servation of Energy may be conveniently used in some cases to

determine whether a system of bodies at rest is in stable or

unstable equilibrium.

Let the system be in equilibrium in any position and let V^ be

the potential energy of the forces in this position. Let the system

be displaced into any initial position very near the position of

equilibrium and be started with any very small initial kinetic

energy Tj, and let V^ be the potential energy of the forces in this

position. At any subsequent time let T and V be the kinetic and
potential energies. Then by the principle of energy

T+V=T,-^V, (1).

Let Fbe an absolute minimum in the position of equilibrium,

so that V is greater than V^ for all neighbouring positions. The
initial disturbed position being included amongst these, it follows

that V^ — Fq is a small positive quantity. Now the kinetic energy

T is necessarily a positive quantity, and since F is > F„, the

equation (1) shows that 2' is < T^-y Fj— F^. Thus throughout the

subsequent motion the vis viva is restricted between zero and a

small positive quantity, and therefore the motion of the system
can never be great.

Also, since T is necessarily positive, the system can never
deviate so far from the position of equilibrium that F should

become greater than T^+ F,. These two results may be stated

thus.

If a system he in equilihHum in a position in luhich the potential

energy of the forces is a minimum or the work a maadmum for all
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displacements, then the system if slightly displaced will never acquireany large amount of vis viva, and will never deviate far froin the
position of equilibrium. The equilibnum is then said to testable.

It wiU be shown that this reasoning may in certain cases be extended to de-
termine whether a given state of motion as well as a given state of equilibrium is
stable. See also the Stability of Motion, Chap. vi.

468. If the potential energy be an absolute maximum in the
position of equilibrium, V is less than F„ for all neighbouring
positions. By the same reasoning we see that T is always <Teater
than T^+ V^- V^, and the system cannot approach so near the
position of equilibrium that V should become greater than T + V

.

So far therefore as the equation of vis viva is concerned there is

nothing to prevent the system from departing widely from the
position of equilibrium. To determine this point we must examine
the other equations of motion*.

If any principal oscillation could exist, let the system be placed

at rest in an extreme position of that oscillation, then the system
will describe that principal oscillation and will therefore pass

through the position of equilibrium. But if T^ be zero, V can

never exceed F,, and can therefore never become equal to F,.

Hence the system cannot pass through the position of equilibrium.

It is unnecessary to pursue this line of reasoning further, for

the argument will be made clearer in the next article.

469. We may also deduce the test of stability from the equa-

tions which determine the small oscillations of a system about a

position of equilibrium. Let the system be referred to its prin-

cipal co-ordinates, and let these be 6,
(f>,

&c. Then we have

2T=e" + i>"+

2{U-U,) = b,,e' + b^i>'+

where &„, h^^, &c. are all constants, and U^ is the value of U in the

position of equilibrium. Taking as a type any one of Lagrange's

equations
ddT_dT^dU
dtdd' de dd

'

we have 0" — b,^d = 0,

• This demonstration is twice given by Lagrange in his Mecani<]ue ^"^'v/'j"'-

In the form in which it appears in the first part of that work. V is expanded m

powers of the co-ordinates, which are supposed verj- smaU; but in Section vi. of

the second part, this expansion is no longer used, aud the proof appears alract

exactly as it is given in this treatise up to the asterisk. The demonstration in

the next article is simplified from that of Lagrange by the use of principal co-

ordinates.
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with similar equations for
(f>,

i/r, &c. If b^^ is positive, this equation

will give in terms of real exponentials, and the equilibrium will

be unstable for all disturbances which affect 6, except such as

make the coefficient of the term containing the positive exponent

zero. If 6„ is negative, will be expressed by a trigonometrical

term, and the equilibrium will be stable for all disturbances which

affect only. In this demonstration the values of 6jj, b^^, &c. are

supposed not to be zero.

If in the position of equilibrium U is a. maximum for all

possible displacements of the system, we must have 6j,, b^^, &c. all

negative. Whatever disturbance is given to the system, it will

oscillate about the position of equilibrium, and that position is

then stable. If Z7 is a maximum for some displacements and a

minimum for others, some of the coefficients b^^, 6,3, &c. will be
negative and some positive. In this case if the system be dis-

turbed in some directions, it will oscillate about the position of

equilibrium ; if disturbed in other directions, it may deviate more
and more from the position of equilibrium. The equilibrium is

therefore stable for all disturbances in certain directions, and un-
stable for disturbances in other directions. If C^ is a minimum
in the position of equilibrium for all displacements, the coefficients

6j^, 6j2, &c. are all positive, the equihbrium will then be unstable

for displacements in all directions. Briefly, we may sum up the

results thus.

The system will oscillate about the position of equilibrium for
all disturbances if the potential energy is a minimum for all dis-

placements. It will oscillate for some disturbances and not for
others if the potential energy is neither a maximum nor a minimum.
It will not oscillate for any disturbance if the potential energy is a
maximum for all displacements.

It appearsfrom this theorem that the stability or instability of
a position of equilibrium does not depend on the inertia of the

system but only on the force function. The rule is, give the
system a sufficient number of small arbitrary displacements, so

that all possible displacements may be compounded of these. By
examining the work done by the forces in these displacements we
can determine whether the potential energy Is a maximum or

minimum or neither.

Ex. 1. A perfectly free particle is in equilibrium under the attraction of any
number of fixed bodies. Show that if the law of attraction be the inverse square,

the equilibrium is unstable. [Eamshaw's Theorem.]

Let be the position of equilibrium, Ox, Oy, Oz any three rectangular axes,

then if K be the potential of the bodies, K, = -^-s, 6,0 = -f-» , &i, =^. But since
ax* ay' " ca^

the sum of these is zero, h^, 6^, b^ cannot all have the same sign.
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Ex. 2. Hence show that if any number of particles, mutually repelling each
other, be contained in a vessel, and be in equilibrium, the equilibrium will be
unstable unless they all lie on the contaming surface. [Sir W. Thomson, Camb.
Math. Journal, 1845.]

The Cavendish Experiment.

470. As an example of the mode in which the theory of small
oscillations may be used as a means of discovery we have selected

the Cavendish Experiment. The object of this experiment is to

compare the mass of the earth with that of some given body. The
plan of effecting this by means of a torsion-rod was first suggested

by the Rev. John Michell. As he died before he had time to

enter on the experiments, his plan was taken up by Mr Cavendish,

who published the result of his labours in the Phil. Trans, for

1798. His experiments being few in number, it was thought

proper to have a new determination. Accordingly in 1837, a

grant of £500 was obtained from the Government to defray the

expenses of the experiments. The theory and the analytical

formulae were supplied by Sir G. Airy, while the arrangement of

the plan of operation and the task of making the experiments

were undertaken by Mr Baily. Mr Baily made upwards of two

thousand experiments with balls of different weights and sizes,

and suspended in a variety of ways, a full account of which is

given in the Memoirs of the Astronomical Society, Vol. xiv.

The experiments were, in general, conducted in the following

manner.

471. Two small equal balls were attached to the extremities

of a fine rod called the torsion-rod, and the rod itself was sus-

pended by a string fixed to its middle point 6'. Two large

spherical masses A, B were fastened on the ends of a plank

which could turn freely about its middle pomt 0. The pomt O
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was vertically under G and so placed that the four centres of

gravity of the four balls were in one horizontal plane.

First, suppose the plank to be placed at right angles to the

torsion-rod, then the rod will take up some position of equilibrium

called the neutral position, in which the string has no torsion.

Let this be represented in the figure by Ca. Now let the masses

A and B be moved round into some position B^A^, making a

not very large angle with the neutral position of the torsion-rod.

The attractions of the masses A and B on the balls will draw the

torsion-rod out of its neutral position into a new position of equi-

librium, in which the attraction is balanced by the torsion of the

string. Let this be represented in the figure by CE^. The angle

of deviation E^G% and the time of oscillation of the rod about this

position of equilibrium might be observed.

Secondly, replace the plank AB at right angles to the neu-

tral position of the rod, and move it in the opposite direction until

the masses A and B come into some position A^B^ near the rod

but on the side opposite to B^A^. Then the torsion-rod will

perform oscillations about another position of equilibrium CE^
under the influence of the attraction of the masses and the torsion

of the string. As before, the time of oscillation and the deviation

EJJa might be observed.

In order to eliminate the errors of observation, this process

was repeated over and over again, and the mean results taken.

The positions B^A^ and A^B^, into which the masses were alter-

nately put, were as nearly as possible the same throughout all the

experiments. The neutral position Ca of the rod very nearly

bisected the angle between B^A^ and A^B^, but as this neutral

position, possibly owing to changes in the torsion of the string,

was found to undergo slight changes of position, it is not to be
considered in any one experiment coincident with the bisector

of the angle A^CB^.

Let Cx be any line fixed in space from which the angles may
be measured. Let h be the angle xCa, which the neutral position

of the rod makes with Gx ; A and B the angles which the alter-

nate positions, B^A^ and A^B^, of the straight line joining the

centres of the masses, make with Gx ; and let a = ^{A + B). Also
let X be the angle which the torsion-rod makes with Cx at the
time t.

Supposing the masses to be in the position -4 5, , the moment
about CO oi their attractions on the two balls ana on the rod will

be a function only of the angle between the rod and the Une A^B^;
let this moment be represented by ^{A — x). The whole apparatus
was enclosed in a wooden casing to protect it from any currents

of ail". The attraction of this casing cannot be neglected. As it
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may be different in different positions of the rod, let the moment
of its attraction about CO be -^ {x). Also the torsion of the string
will be very nearly proportional to the angle through which it hw
been twisted. Let its moment about GO be E [x — h).

If then 7 be the naoment of inertia of the balls and rod about
the axis CO, the equation of motion will be

I -^,= ^{^- x) + ^ {x) - E{x- h).

Now a — x is a small quantity, let it be represented by f
Substituting for x and expanding by Taylor's theorem in powers
of ^, we get

Let ^.^ <\>'{A-a)-^'ia)^E
^

and
^^^^HA-a)^^ia)-Eia-h)^

M
Then x = e + L s\n[nt-\-L'),

where L and L' are two arbitrary constants. We see therefore

that in the position of equilibrium the angle the torsion-rod

makes with the axis of x is e, and the time of oscillation about

the position of equilibrium is — .

Let us now suppose the masses to be moved into their alternate

position ^2-^2 5 ^^® moment of their attraction on the balls and

rod will now he -^{x-B). The equation of motion is therefore

I^ = -4>[x-B)+^{x)-E[x-h).

Let a = a; - ^, then substituting for B its value 2a - A, we find

by the same reasoning as before

x = e +N&m{nt-\-N'),

where n has the same value as before and

-6{A-a)-^^{a)-E{a-h)

e'^a +-^ j^,
•

In these expressions, the attraction ^{a) of the casing, the

coefficient of torsion E and the angle h are f^""l^""^-
^^^",

they all disappear together, if we take the difference between

e and e. We then find

(f>(A-a)_e-e (2W
^^^
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where T is the time of a complete oscillation of the torsion-rod

about either of the disturbed positions of equilibrium. Thus the

attraction (f){A — a) can be found if the angle e — e between the

two positions of equilibrium and also the time of oscillation about

either can be observed.

472. It is sometimes wrongly objected to the Cavendish Ex-
periment that the attractions of the balls A and B are supposed

to be great enough to be measured, while the much greater

attractions of surrounding objects, such as the house, &c., are

neglected. But this is not the case. The attractions of all fixed

bodies are included in that of the casing. These are therefore

not neglected but eliminated from the result. It is to effect this

elimination that we have to observe both e' — e and the time of

oscillation. We thus really form two equations and from these

we eliminate those attractions which we do not want to find.

473. The function ^ (^ — a) is the moment of the attraction

of the masses and the plank on the balls and rod, when the rod

has been placed in a position Cf, bisecting the angle J. jCjBj be-

tween the alternate positions of the masses. Let M be the mass
of either of the masses A a,nd B, m that of one of the small balls,

m that of the rod. Let the attraction oi M on m be represented

MfYl
by fi -jyT > where D is the distance between their centres. If

(p, q) be the co-ordinates of the centre of A^ referred to Cf as

the axis of x, the moment about G of the attraction of both the

masses on both the balls is

= 2^Jlfml '-i
J

^ -.1.

where c is the distance of the centre of either small ball from the

centre G of motion. Let this be represented by fiMmP. The
moments of the attraction of the masses on the rod may by
integration be found = fiMm'Q, where ^ is a known function of

the linear dimensions of the apparatus. The attraction of the

plank might also be taken account of. Thus we find

(}>{A-a)=fiM(r)iP + m'Q). .

If r be the radius of either ball, we have

I
5 j 3

which may be represented by 1= mP' + m'Q', where P' and (^ are

known functions of the linear dimensions of the rod and balls.

Hence we find by substituting in equation (A)

mP +m'Q _e-e' /27rY
^ -mP'+m'Q'' 2 '['t)'
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Let E be the mass^Uhe earth. R its radius and g the force

of gravity, then 9 = H'^, . Substituting for fi, we find

M^e-l /27rY 1 m'^^^
E 2 -\t)'^^'

m ^

m
The ratio -, was taken equal to the ratio of the weights of

the ball and rod weighed in vacuo, but it would clearly have been
more accurate to have taken it equal to the ratio weighed in air.
For since the masses attract the air as well as the balls, the pres-
sure of the air on the side of a ball nearest the attracting tna.ss is

greater than that on the furthest side. The difference of these
pressures is equal to the attraction of the mass on the air displaced
by the ball.

474. By this theory the discovery of the mass of the earth
has been reduced to the determination of two elements, (1) the
time of oscillation of the torsion-rod, and (2) the angle e- e

between its two positions of equilibrium when under the influence

of the masses in their alternate positions. To observe these,

a small mirror was attached to the rod at C with its plane

nearly perpendicular to the rod. A scale was engraved on a ver-

tical plate at a distance of 108 inches from the mirror, and the

image of the scale formed by reflection on the mirror was viewed

in a telescope placed just over the scale. The telescope was

furnished with three vertical wires in its focus. As the torsi(in-rod

turned on its axis, the image of the scale was seen in the telescope

to move horizontally across the wires and at any instant the

number of the scale coincident with the middle wire constitut<?d

the reading. The scale was divided by vertical lines one-thirteenth

of an inch apart and numbered from 20 to 180 to avoid neptive

readings. The angle turned through by the rod when the image

of the scale moved through a space con-esponding to the interval

of two divisions was therefore ^o • fno • « ~ 73" "46. But the

division lines were cut diagonally and subdivided decimally by

horizontal lines; so that not only could the tenth of a division

be clearly distinguished, but, after some little practice, the frac-

tional parts of these tenths. The arc of oscillation of the torsion-

rod was so small that the square of its circular measure could be

* In Baily's experiment, a more accurate value of g was used. If e be the

ellipticity of the earth, m the ratio of centrifugal force at the equator to cquatore^

gravity, and X the latitude of the place, we h&veg=ix^^ |l - 2«+ (^2" " '}
*^'^) '
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neglected ; but as it extended over several divisions it is clear

that it could be observed with accuracy. A minute description

of the mode in which the observations were made would not find

a fit place in a treatise on Dynamics, we must therefore refer the

reader to Baily's Memoir.

In this investigation no notice has been taken of the efifect

of the resistance of the air on the arc of vibration. This was, to

some extent at least, eliminated by a peculiar mode of taking the

means of the observations. In this way also some allowance was
made for the motion of the neutral position of the torsion-rod.

475. The density of water in which the weight of a cubic

inch is 252'725 grains (7000 grains being equal to one pound
avoirdupois) was taken as the unit of density. The final result

of all the experiments was that the mean density of the earth

is 5-6747.

476. Two other methods of finding the mean density have

been employed. In 1772 Dr Maskelyne, then Astronomer Royal,

suggested that the mass of the earth might be compared with

that of a mountain by observing the deviation produced in a

plumb-line by the attraction of the latter. The mountain chosen

was SchehalHen, and the density of the earth was found to be
a little less than five times that of water. See Phil. Trans.

1778 and 1811. From some observations near Arthur's Seat, the

mean density of the earth is given by Lieut.-Col. James, of the

Ordnance Survey, as 5*316. See Phil. Trans. 1856.

The other method, used by Sir G. Airy, is to compare the

force of gravity at the bottom of a mine with that at the surface,

by observing the times of vibration of a pendulum. In this way
the mean density of the earth was found to be 6566. See Phil.

Trans. 1856.

EXAMPLES*.

1. A uniform rod of length 2c rests in stable equilibrium \vith its lower end

at the vertex of a cycloid whose plane is vertical and vertex downwards, and passes

through a small smooth fixed ring situated in the axis at a distance b from the

vertex. Show that if the equilibrium be slightly disturbed, the rod will perform

small oscillations with its lower end on the arc of the cycloid in the time

4ir . / - , —^ , where 2a is the length of the axis of the cycloid.

2. A small smooth ring slides on a circular wire of radius a which is con-

strained to revolve about a vertical axis in its own plane, at a distance c from the

centre of the wire, with a uniform angular velocity \/ Z.— ; show that the ring

* Tliese examples are taken from the Examination Papers which have been set

in the University and in the Colleges.
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will be in a position of stable relative equilibrium when the radius of the circular
wire passing through it is inclined at an angle 45« to the horizon ; and that if tl»e

ring be slightly displaced, it will perform a small oscillation iu the time

^T
j

. --—=—
I .

3. A uniform bar of length 2a, suspended by two equal parallel strings each of
length b from two points in the same horizontal Une, is turned through a small
angle about the vertical line through the middle point, show that the time of a

small oscillation is 27r » /—^

.

4. Two equal heavy rods connected by a hinge which allows them to move
in a vertical plane rotate about a vertical axis through the liinge, and a string

whose length is twice that of either rod is fastened to their extremities and

bears a weight at its middle point. If M, M' be the masses of a rod and th;

particle, and 2a the length of the rod, prove that the angular velocity about the

vertical axis when the rods and string form a square is *. / ——^ . —^^^ andV 2asf2 ^
if the weight be slightly depressed in a vertical direction the time of a small

•11 ^- • o /^aj2 M+SM'
oscillation is 2ir \/ .,1: . v?

—

k^tft-V 15^ M+2M'

5. A ring of weight W which slides on a rod inclined to the vertical at an angle

a is attached by means of an elastic string to a point in the plane of the rod so

situated that its least distance from the rod is equal to the natural length of the

string. Prove that if 6 be the inclination of the string to the rod when in

equilibrium, cot^ - cos^ = — cosa, where w is the modulus of elasticity of the

string. And if the ring be slightly displaced the time of a small oscillation will

be 27r /— —=r^- , where I is the natural length of the string.

\/ wg 1- sin* 6

6. A circular tube of radius a contains an elastic string fastened at it« highest

point equal in length to ~ of its circumference, and having attached to its other

extremity a heavy particle which hanging vertically would double its length. The

system revolves about the vertical diameter Nvith an angular velocity ^^ •
Find

the position of relative equilibrium and prove that if the particle be slightly dia-

. . 2jrVT /a
turbed the time of a small oscillation is -j-^^ -y g

•

7. A heavy uniform rod AB has its lower extremity A lixed to a verticd

axis and an elastic string connects B to another point C in the axis such that

4a=^ = a; the whole is made to revolve round AC with such anguUr velocity

that thfstiing is double its natural length, and horizontal ^^-
^^J^*^ "^J]

relative equilibrium and then left to itself. H the rod be slighUy^sturbed m

vertical plane, prove that the time of a small osciUation is 2t^g^ .

the weight

of the rod being sufficient to stretch the string to twice its length.
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8. Three equal elastic strings AB, BC, CA surround a circular arc, the end A
being fixed. At B and C two equal particles of mass m are fastened. If i be the

natural length of each string supposed always stretched and X the modulus of

elasticity, show that if the equilibrium be disturbed the particles will be at equal

distances from A after intervals
/ml

9. A particle of mass M is placed near the centre of a smooth circular

horizontal table of radius a, strings are attached to the particle and pass over n

smooth pullies which are placed at equal intervals round the circumference of the

circle ; to the other end of each of these strings a particle of mass M is attached

;

show that the time of a small oscillation of the system is 2ir |
J

.

10. In a circular tube of uniform bore containing air, slide two discs exactly

fitting the tube. The two discs are placed initially so that the line joining their

centres passes through the centre of the tube, and the air in the tube is initially of

its natural density. One disc is projected so that the initial velocity of its centre

is a small quantity. If the inertia of the air be neglected, prove that the point

on the axis of the tube equidistant from the centre of the discs moves uniformly

and that the time of an oscillation of each disc is 2v / ^^ where M is the
JMa-K

mass of each disc, a the radius of the axis of tube, P the pressure of air on the

disc in its natural state.

11. A uniform beam of massM and length 2a can turn round a fixed horizontal

axis at one end ; to the other end of the beam a string of length I is attached and

at the other end of the string a particle of mass vi. If, during a small oscillation

of the system, the inclination of the string to the vertical is always twice that of

the beam, then ilf (3i - a) = 6?n (Z+ a).

12. A conical surface of semivertical angle a is fixed with its axis inclined at

an angle d to the vertical, and a smooth cone of semivertical angle /3 is placed

within it so that the vertices coincide. Show that time of a small oscillation

= ^TT . / -
^'

, where a is the distance of the centre of gravity of the cone
\J g sm^ ' ° "^

from the vertex.

13. A number of bodies, the particles of which attract each other with forces

varying as the distance, are capable of motion on certain curves and surfaces.

Prove that if A, B, C be the moments of inertia of the system about three axes

mutually at right angles through its centre of gravity, the positions of stable

equilibrium will be found by making A +B + C a minimum.



CHAPTER X.

ON SOME SPECIAL PROBLEMS.

Oscillations of a rocking body in three dimensions.

477. A heavy body oscillates in three dimensions with one
degree offreedom on a fixed rough surface of any form in such a
manner that there is no rotation about the common normal. Find
the motion.

478. The Relative Indicatrix. Let be the point of

contact when the heavy body is in equiUbrium. Let the common
normal be the axis of z and let the other two axes be at riglit

angles in the common tangent plane. The equations to the

portions of the surfaces in the neighbourhood of may be writt^iu

in the forms

z = ^ [ax^ + 'ihxy -f cif) + &c.

/ = |- (a'«' + ^b'xy + cY) + «&c.

Let an ordinate move round the origin so that the portion z - z

between the surfaces is constant and equal to any indefinitely

small quantity A. This ordinate traces out an evanescent conic

on the plane of xy whose equation is

(a - a) x' + 2 (& - b') xy + (c - c') / = 2A.

Any conic similar and similarly situated to this, lying in the

tangent plane and having its centre at is called the lieUUwe

Indicatrix of the two surfaces.

Let OR be any radius vector of this indicatrix, then the

difference of the curvatures (or the sum, if the curvatures aro

measured in opposite directions) of the two sections made by a

normal plane zOR varies inversely as the square of OK. IJns ol

course follows from the definition of the conic by a well-known

argument in solid geometry. Thus let (r, z) {r, z) be the co-

ordinates of two points on the two circles of curvature at the

same distance from the axis of z. We l\ave ultmiately -p^ = /

and 2p'/ = r\ Also z-z' = ^, hence eUmmating z and z we see

that the difiference of the curvatures varies as r .
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Let OR be a tangent to the arc of rolling determined by the

geometrical conditions of the question. Let p, p be the radii of

curvature of the normal sections through OR taken positively

when the curvatures are in opposite directions, and let - = - + —.^^
s p p

Then s may be called the radius of relative curvature.

We have the three following propositions which are of use in

Dynamics.

479. Prop, The Instantaneous Axis. Let 01 and Oy
be two conjugate diameters of the relative indicatrix, then if Oy
be a tangent to the arc of rolling, 01 is the instantaneous axis,

and if be the indefinitely small angle turned round the in-

stantaneous axis, the arc a of rolUng is given hy a = ds sin yOI.

To prove this, measure in the plane yz along the surfaces two lengths OP and

OP' each equal to <r. Then in the limit P'P is parallel to the normal Oz. Let it

cut the plane of xy in M. Draw another ordinate Q'QN indefinitely near to P'PM
so that PP= QQ', then MN is an elementary arc of that relative indicatrix which

passes through M, and is therefore parallel to 01 the conjugate diameter of OM.
Also PQP'Q' is a parallelogram.

The planes OPQ, OPQ' are ultimately tangent planes at P and P' and must in-

tersect in a straight line OJ parallel to PQ or FQ'. If then we turn the body round

OJ the tangent planes at P and P' will be brought into coincidence and the one body

will roll on the other. Thus OJ is the instantaneous axis.

Now since Jlf^is the projection of PQ or P'Q' on the plane of xy, it follows that

01, a parallel to MN, is the projection of OJ, a parallel to PQ or P'Q'. Also the

parallels PQ and P'Q', being tangents to the surfaces, make indefinitely small

angles with the plane of xy, hence OJ makes an equal indefinitely small angle

with 01. If be this small angle and 6 the angle of rotation about OJ, the

motion of the body is represented by a rotation B sin
<f>
about Oz and 6 cos tp about

01. Since d is indefinitely small, the former is of the second order and is to be

neglected. The latter reduces to 0.

To prove the last part of the proposition, we may again resolve this latter

rotation into a rotation 6 cos yOl about Oy and a rotation 6 sin yOI about Ox.

The former does not affect the arc of rolling along Oy, the latter obviously gives

(r=sd sinj/OI.

480. Prop. The Cylinder of Stability. Measure a length

s sin'' yOI along the common normal Oz and describe a cylinder on
it as diameter, the axis being parallel to 01. If the centre of

gravity of the body be inside, the equilibrium is stable : if outside

and above the plane of xy, the equilibrium is unstable. This

cylinder may therefore be called the cylinder of stability.

These results follow from the second expression for the moment
of gravity about 01 found in the next proposition.
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481 Prop. The time of Oscillation. Ut G be thocentre of gravity and ^ be tbe radius of gyration of the Uxlv

^>en by
' "''' ^ '' *'^ ^^"P^^ eq'^ivalcnt pleudulut^

-J-
= 5 cos G(9^ . sin'^ yOI- OG. sin* 6^0/.

If OG^ produced cut the cylinder of stability in V, then
7P-2

-2-=G^I^.sin='6^0/.

^
We deduce from this, that the time of osciUation of the body

IS the same as if the fixed surface were plane and the cim-aturcs
of the upper body at the point of contact altered so that the
Relative Indicatrix remains the same as before.

^
482. These results may be obtained by taking momenta about the instanUneoos

axis, see Art. 448. The general course of reasoning may be indicated as follows.
In equilibrium is the point of contact and OG is vertical ; as the body rolU
on the surface, say, in the direction yT, let P be the point of contact at the
time t and let 0', G' be the positions in space occupied by the points and O
of the body. These points are not marked in the figure but and 0' will obviously

lie indefinitely close to each other between y' and P, so that 00' is perpendicular

to Py, while G' has moved from G a little to the right, as seen from any point

in PI'. Draw PW vertical, and PF parallel and equal to O'G'. If PI' be the

instantaneous axis at the time t, 9 is the angle between the planes JFT/' and

FPr.
To find the moment of the weight about PI' we resolve gravity parallel and per-

pendicular to PI'. The former component has no moment about PV, the latter is

g sin WPI'. Let this latter act parallel to some straight lino AT. The moment

required is the product of resolved gravity into the shortest distance between tho

line of action of this force and the straight line PI'. This shortest distAnco la

equal to the sum (with their proper signs) of the projections of PO', O'G' on «

straight line perpendicular to both KP and PP. Let this straight line be PlI,

To find these projections we shall use a Uttle Spherical Trigonomctrj*. Let the

R. D.
24



370 ON SOME SPECIAL PROBLEMS.

figure represent the spherical triangles formed by the arcs on a sphere sabtending

the rarious angles at the centre P. Also Py' is a tangent to PO' the arc of rolling,

and Pz' is normal to the surface at P. The projection of PO' on PH is a cos y'PH

= (r coBi/PN cos NPH=<Tsmy'Pr cos KPz'. The projection of O'G' is the same as

the projection of PF=PF cosHPF = -PFsia WPF= - OG . sin WPF.

The differential equation is therefore

K^"= -eg{s . smyPV . sin TTTZ' . cos KPz' - OG . sin" WPP).

We now replace sin WPP . cos KPz' by its equivalent cos WPz^. In the small

terms containing the factor 6 we may remove the accents, and replace P and W by

and G. We immediately obtain one of the results.

To obtain the other, we write the equation of moments in the form

E^e" = -eg sin2 WPP \s sin« y'PP ^^^5S>-Og\.'^
(

" cos KPV )

But if 2) be the diameter of the cylinder of stability drawn with its axis parallel to

PP, and if PW cut the cylinder in V, we have PF" . cos A'PTI'=Z>cos A'P^'.

Substituting in the equation the expression in brackets takes the form PV-OG,
which is ultimately equal to GV. We thus obtain the second result.

We might also find these oscillations by the method of vis viva.

Oscillations of Cones in three dimensions.

483. Oscillations of Cones to the first order. A heavy

cone of any form oscillates on a fixed rough conical surface, the

vertices being coincident. It is required to find the time of a small
oscillation.

The motion of a cone about its vertex regarded as a fixed point

is conveniently discussed by the help of Spherical Trigonometry.

Let be the common vertex, G the centre of gravity of the

moving cone, OG = h. With centre and a radius equal to OG,
describe a sphere ; it is on this sphere that we shall suppose our
spherical triangles to be constructed. Let 0/be the instantaneous

axis of the moving cone, i.e. the common generator along which
the two cones touch and let it cut the sphere in /. Let IF be a
vertical drawn upwards to cut the same sphere in W. Let the
arcs WI = z, Gl = r. In the position of equilibrium the three

straight lines OW, OG, 01 are in the same vertical plane, and
they are so represented in the figure.
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Let n be the inclination of the vertical plane GOT tn !normal plane to the two cones aloncr OF Ll Tl' h^fx
^^''^

ang es of the two right circuFar oscJatiit cones'ii^^.t T"01 taken positively when the curvaturP. or.Tn V-
^^ "^'"""S

In the figu^re their'Lxes cut the sphere?^
'•^^^^'--

fL Y ^.^% *¥ ^^^'"^^ °^ gyration of the movincr cone about Orthe length L of the simple equivalent pendulum fs gi "en by
'

fLsin(^-r)cosn^Mii^'_ smrsin^.

.

484. As the heavy cone rolls on the surface the point on the sphere which i, atI m eauzhhrxom takes the position I', and P is the new point of contact ttu^arc IG assume tije position I'G', and let the centre C of the oscnlatin« cone 1to (7. Let c= IP be the arc rolled over, and let be the angle turned round by

the cone. Since this angle is ultimately the same as CPC, we have Cf = ^Binp.
Also CC cosec {p+p'), and o-cosecp' are each equal to the angle IDP. Wo thu«

sin (p + p')

485. The vertical OIF cuts the sphere in W. To find the moment of tho weight

about OP we must resolve gravity parallel and perpendicular to ()P. Tho former

component has no moment, and the latter is g sin WP. Let this latter act parallel

to some straight line KO. The moment required is the product of resolved Rravity

into the projection of OG' on a straight line OH which is perpendicular to both OK
and OP. Thus the spherical triangle IIKP has all its sides right angle*. la

equilibrium G lies in the vertical plane WOI, and as the cono rolls G moves to 0",

so that the arc GG' is perpendicular to WI, and equal to sin r. Lot this arc cut

WP in M. The projection required is hco3lIG'= -h . MG' since IIM is a right

angle. Since PI makes with PII an angle which is ultimately equal to n, we bare

= -^^^^ = ^'° [^ ~ ^^
ultimately. The moment required, nrpng the eon*

a- cos n sin WI emz
back to its position of equilibrium, is gh nmz{GM-GG'), substitutinp, this bocomo*

24—2
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gh { XT cos 71 Bva.(z-r)~9 sin r sin 2 } . Equating this moment with- the sign changed

to K^d", the result to be proved follows immediately.

If this figure be thought complicated we may obtain this equation by the

method given in Art. 511. We there replace the geometry here used by a process of

differentiation, which may be extended to any higher degree of approximation.

486. Examples. Ex. 1. If the upper body be a right cone of semi angle p,

and if it be on the top of any conical surface, we have 7i= and T=p. The pre-

ceding expression then takes the form

K^_ sin(2 + p')sin2p

hL~ sin(p + p')

Ex. 2. A right cone of angle 2p and altitude a oscillates on a perfectly rough

plane inclined to the vertical at an angle z which is greater than a right angle, the

a (1 + 5 cos-p)
length of the equivalent pendulum is

- 5 cos p cos z

Ex. 3. A right cone of angle 2p and altitude a, suspended by its vertex from

a fixed point in a rough vertical wall, makes small oscillations, prove that the

length of the equivalent pendulum is -=
.

Ex. 4. A right cone of angle 2p and altitude a is divided by a plane through the

axis. One of the halves rests in equilibrium with its axis along a generator of a

fixed right cone of angle 2p', the vertices being coincident, prove that the length L
of the equivalent pendulum is given by

{97r2+ 16tan*p}* —^^—^=3jrsm«tanp'-4tanp , ,

where z is the inclination of the line of contact to the vertical measured upwards.

487. Condition of Stability of Cones to the first order.

To determine the condition of stability when a heavy cone rests in

equilibrium on a perfectly rough cone fixed in space.

It is evident that we must have the length L of the equivalent

pendulum found in Art. 483 equal to a positive quantity. This

leads to the following constmction, which is represented in the

figure of Art. 483. Measure along the common normal CI to the

cones a length IS= s such that cot s = cot p + cot p'. From S
draw an arc SR perpendicular to IG W, then

cos n = cot s . tan IR.

Then L is positive and the equilibrium is stable if the centre of

gravity of the moving cone be either below the common generator

of the two cones or above the generator at an angle r such that

cot r > cot z + cot IE.

When the vertex is very distant the cones become cylinders.

In this case if the arc z become a quadrant, the condition of

stability is reduced to r<IR. This agrees with the condition
given in Art. 442.
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Large Tautochromus Motions.

488. When the oscillations of a system are not small the
equation of motion cannot always be reduced to a linear form
and no general rule can be given for the solution. But the oscil-
lation may still be tautochronous and it is sometimes import-mt
to ascertain if this be the case. Various rules to determine this
are given in the following Articles.

489. Show that if the equation of motion he

jT2 = [(^ homogeneous function of ,- and x of the first degree)
,

then, in whatever position the system is placed at rest, the time of
arriving at the position determined ht/ x = is the same.

Let the homogeneous function be written xf (- -.-
] . Let x

and ^ be the co-ordinates of two systems starting from rest in two

"different positions, and let x = a, ^ = Ka initially. It is easy to

see that the differential equation of one system is changetl into

that of the other by writing ^ = kx. If therefore the motion of

one system is given by « = ^ {t. A, B), that of the other is given

by ^= K^(t^ A', B'). To determine the arbitrary constants, A, li

and A\ B', we have exactly the same conditions, viz, when t = 0,

^ = a and S = 0. Since only one motion can follow from the

same initial conditions we have A' = A, and B' = B. Hence

throughout the motion ^ = kx and therefore x and | vanish U)-

gether. It follows that the motions of the two systems are

perfectly similar.

This result may also be obtained by integrating the differential

equation. If we put - ^ = p, we find a; = ^<^ (« + B). When t = 0,

7 X at , .

^ = 0, and therefore <}>' (B) = 0. Thus B is known and x vanishes

when <f){t + B) = whatever be the value of A.

490. It must be noticed that if the force be a homogeneous

function of the velocity and x, the motion is tautochronous only

in a certain sense. It may happen that the system arrives at ic

position determined by a^ = only after an infinite time, or the

time of arrival may be imaginary. Thus suppose he hom -

geneous function to be m^x, where m' is positive then the snsUm

starting from rest moves continually away froin the Position x - u.

The value of x is well known to be represented by an exponenti.U

function of x which never ceases to increase witli tlie ^ «"^
.

»

therefore necessary in applying the rule to ascertain ^^hcther tlic

time given by the equation <j>{t+B) = Ois real or not.
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We may in general determine this from the known circum-

stances of each particular case. The two following general con-

ditions will guide us in our decision. If the time of arrival at

the position ^ = is to be real and finite and the same from all

initial positions, it is clear that the position x = must be one of
equilibrium. For if not place the system at rest indefinitely close

to that position, then the time of arrival would be zero, unless

the acceleration be also zero. Further the position of arrival

must be a position of stable equilibnum for all displacements ; or

at least for all displacements on that side of the position of equi-

librium on which the motion is to take place.

491. Lagrange's rule. If the equation of motion of the

system be

d^x /dxYf(x) fdx
\

dF = ldtJ f(^+^|dt'^^^>|

where F is a homogeneous function of the first degree, and f (x) is

any function of x, show timt in whatever position the system is

placed, the time of arriving at the position determined by f (x) =
is the same.

This is Lagrange's general expression for a force which makes
a tautochronous motion. The formula was given by him in the
Berlin Memoirs for 1765 and 1770. Another very complicated

demonstration was given in the same volume by D'Alembert,
which required variations as well as differentiations. Lagrange
seems to have believed that his expression for a tautochronous
force was both necessary and sufiicient. But it has been pointed

out by M. Fontaine and M. Bertrand that though sufficient it is

not necessary. At the same time the latter reduced the demon-
stration to a few simple principles. A more general expression

than Lagrange's has been lately given by Brioschi, but it does not

appear to contain any cases of tautochronous motion not already

given by Lagrange's formula.

Lagrange's result may be arrived at by the following reasoning.

The motion from rest is tautochronous with regard to the point

x = 0, if the equation of motion be -^a = ^F ( - 757 ) • Put x = j>{y)

we easily find

*'S-^iiy=*nfS)
where ^ stands for j> (y) and accents as usual denote differential

coefficients. Let ^, =f{y), substituting we have

df ~ f \dt) f \dtj
"^-^^

\fdl)
'
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where / has been written for f{y). The last two temis of this

expression form a homogeneous function of / and ~f of the first
at

degree, and therefore Lagrange's formula has been proved. This
demonstration is due to Bertrand.

The motion begins from rest with any initial value of x and
ends when a? = 0. Hence writing x = <^{y) we see that in the

second equation the motion begins with 7^ = and with any
dx '

initial value of y, and terminates when ^ (^) = 0. Now ,- does

not in general vanish when x = 0, since the system arrives with

some velocity at the position of equilibrium. But -7- = <}>'{y) S: .

hence (jy'iy) does not vanish when x = 0. It follows therefore, since

(ji = (j)' .fly), that the motion terminates when f{y) = 0.

492. Effect of a resisting medium. Ex. If the motion of

any system is tautochronous according to Lagrange's formula in

vacuo, it will also be tautochronous in a resisting medium, if the

effect of the resistance is to add on to the differential equation of

motion a term proportional to the velocity. This theorem is due

to Lagrange.

493. Motion on a rough cycloid. A heavy particle slides

from rest on a rough cycloid placed with its axis vertical, show that

the motion is isochronous.

Let be the lowest point of the cycloid, P the particle. 0P=8,

so that the arc is measured from in the direction opi^site to

that of the motion. Let the normal at P make an angle f willi

the vertical, let p be the radius of curvature, and a the diameter

of the generating circle. Then by known properties of the cycloul

s = 2a sin f, p=2a cos f. Let fM be the coefficient of friction, g

the accelerating force of gravity, and let the mass be unity. 1 hen

if R be the pressure on the particle measured inwards when posi-

tive and V the velocity, we have

— = R — g cos yfr

P

d^S -n •
I

Eliminating R the equation of motion becomes

^s ^ fi fdsV _ ,

j^ ^ _ ^ cos f).
de p \dt) -^

Substituting for p and s their values in terms of f, this becomes

-cost^+(Bint + /^cosf)(fy = |-(-^-^--V^)-



TT
^COS €

376 ON SOME SPECIAL PROBLEMS.

Writing /x.= tan e this is identical with

g (.-'*sm (t - .)) +2;^ !e-«* sin (f - .)] = 0.

Since -~ is initially zero, the solution of this equation is

where vl is a constant depending on the initial value of y^.

The motion is therefore tautochronous. At whatever point of the

cycloid the particle is placed at rest, it arrives at a point A deter-

mined by e"*^* sin (>|r - e) = in the same time, and this time is

* /— . The point A at which the tautochronous motion

terminates is clearly an extreme position of equilibrium in which
the limiting friction just balances gravity.

494. That cycloidal oscillations in a medium in which the

resistance varies as the velocity are tautochronous has been proved

by Newton in the second book of the Principia, Prop. xxvi. That
the oscillations are tautochronous when the cycloid is rough has

been deduced by M. Bertrand from Lagrange's formula given in

Art. 491, see Liouville's Journal, Vol. xiiL M. Bertrand ascribes

the proposition to M. Necker, who published it in the fourth

volume of the Memoires presentes a VAcademie des Sciences par
des savants etrangers. It follows of course from Lagrange's pro-

position (Art. 492) that the cycloid is tautochronous when both

the medium resists as the velocity, and the cycloid is rough.

495. BSotion on any rongh curve. A particle starts from rest and is eon-

strained to move along a rough curve under tlie action of any forces, find the

conditions of tautochronous motion.

Let A be the point at which the tautochronous motion terminates, P the position

of the particle at any time t, AP=s, so that s is measured from A in the direction

opposite to that of motion. Let the tangent at P make an angle ^ with the axis

of X, and let ^ and s increase together. Let the tangential and normal components

of the force on P be G and H ; the tangential component G acting on P to urge

the particle towards A and the normal component H acting outwards, i.e. opposite

to the direction in which p is measured. Let the letters R, v, n have the some

meaning as before. We shall suppose p to be positive throughout the arc.

The equations of motion are therefore

-=R-II, v^=fjiR-G (1).

p ds

Since the particle starts from rest we see that R and H are initially equal and thus

have the same sign. We shall suppose that U is positive throughout the motion,

BO that the impressed force urges the particle outwards. It follows that R also is

positive throughout the motion. The friction will therefore continue to be repre-



LARGE TAUTOCHRONOUS MOTIONS. 377

sented by fiR, without any discontinuous changes in the sign of /i, such as woulJ
happen if E were to change sign without a correspondmg change in the direciiou
of the friction. (See Art. 159.) Ehminating R we find

dv f2 ,

^d-.^^-^^-'^^) (2)-

Let F=G-fiH, so that F is the whole impressed force urging the particle

along the tangent towards the point A. We may prove that F must be positive

throughout the motion until the particle reaches A. li F were zero at any point H,
then placing the particle at B at rest, the particle would remain there m e<iuilibriam,

and therefore the times of reaching A from all points could not be the same. Wo
see also by the same reasoning that the point A must be one at which F is zero.

ds
See Art. 490. Writing — for p, equation (2) becomes

^-2^t,^=-2pF (.3).

therefore ^2e-f/i>^=c2-2 I pFe-'i^'i'd^i/ (4),

-/:

where o is the angle the tangent at A makes with the axis of x. As ^ is greater

than a throughout the motion, the constant of integration, viz. <?, must be iwsitivc.

If we put

2 I pFe-'f^'f'drp =^z\ e-i^'^ds= (j> (2) dz,

this equation reduces to the form

lii^ = « (5).

Jc^ - i

The lower limit is determined by the value of z at the point where the motion

begins. Referring to equation (4) we see that, since t; = 0, we have z = e. The

upper limit is determined by the value of z at the point where all the tautochronous

motions are to end. This has been defined by i/-= a, and therefore by z = 0.

If the force F be such that [z) is constant, the integration of (5) presenU no

difficulty. Writing i for (z) we then have ( =^ . Since this result is indepen-

dent of c the motion is tautochronous. Wherever the particle be placed at rest on

the curve, it will reach the position A in the same time, and this time will be
,j^

.

The supposition we have made regarding the value of z gives

j
m i'^ e-i^Usf

=
21

* pFe-^n^l^ ,

differentiating and reducing we find

F=m^eH-'l'[ e-i^'l'pdy;^ W-

This expression wiU give the tangential force which will make motion on a Riven

curve tautochronous. When the force is given and the curve is reqmred. wo nu>

write the equation in the form

-V=^-f-.^
^'

496. We smi ... sko. tkat unless 0(z) l^e constant ^^^
^l''^^.^'^^^'

^

tautochronous. To prove this we must find what forms of 0(z) wUl make tbe
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integral (5) independent of c. Put z = c^, and let 4> (2) be expanded in a series of

some powers of z not necessarily integral, say let ^ (z) = SiVa". Then we have

Joji-e
Now since | is less than unity, the integrals in all the terms are less than the

integral in the term defined by n=0, and therefore they are finite. Since every

element in each integral is positive, none of the integrals can vanish. Hence this

series of powers of c cannot be independent of c unless it contain only the one term

determined by 71= 0. But this makes <p (2) a constant and leads to the solution we

have already discussed.

497. Ex. Show that this law of force coincides with that given by Lagrange's

formula.

We have here to determine when equation (2) coincides with Lagrange's formula.

We therefore take as his form

Comparing this with (2) term for term, we find -^— A =fiF
-J^

, which leads to the

required form for F.

498. Motion on a rongli epicycloid. A particle acted on by a repulsive force

varying as the distance and tending from a fixed point is constrained to move along a

rough curve, find the curve that the motion may he tautochronous.

Let r be the radius vector of the particle, Xr the repulsive force acting along it.

Let p be the perpendicular on the tangent from the origin, then the projection

of the radius vector on the tangent is known to be ~. We have therefore

F— - ^ J?
- M^P• Substituting in equation (7) of Art. 495 we find

m^ d^p „ / o ,\

-xP=d^^-f''^=P-^'+^^P'

therefore />= —;— p (1).

The equation to an epicycloid generated by the rolling of a circle whose radius is

& on a fixed circle whose radius is a is known to be

?'='^'.2-^2. ••• P = ''-::f-P (2),

j--a:^ C-a"
c^-a-

where c = a + 2b. We find therefore that the epicycloid is a tautochronous curve for

a central repulsive force varying as the distance. The time of arriving at the

TT 771/ UpC" "I" fl

position of equihbrium is r— , where m is given by -r- = - „—i .

2m ° •' X c--a*

Ex. Show that the equiangular spiral is not included in the formula (1).

For if we write psin^ a=p, we have (m" + 1) sin^ a greater than unity, which may
be shown to be impossible if the particle is to move at all.

499. Effect of a Resisting BSeditun on the time. We know by Lagrange's

theorem that if the motion on a rough curve be tautochronous in a vacuum, it wiH

be also tautochronous if the motion occur in a medium resisting as the velocity.
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The solution of this by Art. 434 ia

f* _j^e i"^f>dxl^^xc=Ae-'^t cos (,J};iF^r;^t + B).

To find the constants of integration we notice that ^^ and therefore ^^ i, zero

.hen ..0. This gives i.nB =-^^. To find the tin^e of arriving at the

position of equilibrium we put ^=a, this gives s/^^^t+5=' The time t of the
tautochronous motion is therefore given by the equation

We notice that this time depends only on m and k and not on the form of the
curve.

Ex. If the resistance of the medium be so great that k is equal to or greater
than m, the solution by Art. 434 takes another form. Show that in both these cases
the tune of arriving at the position of rest is made infinite by the resistance of the
medium.

Oscillations of Cylinders and Cones to the second order.

500. Condition of Stability of Cylindera to tb« higher orders. When
a heavy cylinder rests in equilibrium on one side of a fixed rough cylinder as
in Art. 441, the condition of stability is, tliat the centre of gravity should lie

within a certain circle called the circle of stability. If the centre of gravity lie on
the boundary of this circle the equilibrium is called neutral, but it is generally

either stable or unstable, only it requires a higher degree of approximation to

distinguish the two. We may effect this to any degree of approximation by the

following easy process, which amounts to the continual differentiation of a certain

quantity until we arrive at a result which is not zero. The sign of this result will

distinguish between the stability and instability of the cylinder. The magnitade

of the result, joined to some other elements, will enable us to form the equation

of motion.
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501. In equilibrium the centre of grav'ity is in the vertical through the point

of contact. Let the body be turned round through any angle 6, so that G in the

figure is the position of the centre of gravity and I the point of contact. LetW

be vertical. Let CID be the common normal to the two cylinders, C and D being

the centres of curvature of their transverse sections. Let p— CI, p'= DI, and let

- = - + -;, so that z is the radius of relative curvature.
z P P

Let IG = r, the angles GIC=n, GIV=<p, and let IP-ds. Then we have the

four following subsidiary equations

dr . dn cos7i 1

ds as r p

dip _1 cos n ds _
'ds~'z r~ '

de~^'

Since GI is the radius vector of the upper curve referred to an origin G fixed

relatively to it, and - - n is the angle this radius vector makes with the tangent at J,

the first of these subsidiary equations is evident. To obtain the second we notice

that C is the centre of curvature so that the distance GC is constant as well as

the radius of curvature, when I moves a short distance ds along the arc. Now

GC^=r^ + p--2preosn,
therefore 0=(r-p cos n) dr+ pr sin n dn.

Substituting for dr its value from the first subsidiary equation, this immediately

gives the second. To obtain the third equation we notice that <p + n is the angle

the normal DI to the lower curve which is fixed in space makes with a straight

line also fixed in space. Hence -r + -r = -r > whence the third equation foUows
ds ds p

from the second. The fourth equation has been proved in Art. •iil; the proof

may be summed up as follows. If CP, DP' be the two normals which will be in a

straight line when the body has turned through an angle d0, then dd=PCI+FDI,

which is ds I
- + -,)= — .

\P pJ 2

502. In equilibrium the centre of gravity of the body must be vertically over

the point of support. Hence ^= 0. In any other position of the body the value

of (j) is given by the series

If in this series the first coefficient which does not vanish be positive and of

an odd order, it is clear that the line IG will move to the same side of the vertical
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as that to which the body is moved. The equilibrium will therefore be unrt*bU>
for displacements on either side of the position of equaibrinm. If the coefllcient
be negative the equilibrium will be stable. On the other hand if the term be of an
even order, it will not change sign with s, the equilibrium will therefore be eUblc
for a displacement on one side and unstable for one on the other side.

The first differential coefficient is given by the third subsidiary equation. Th«
second differential coefficient is found by differentiating this subsidiary equation

and substituting for -y- and — from the others. The third differential coefBcient

may be found by repeating the process. In this way we may find any differential

coefficient which may be required.

503. K the first differential coefficient viz. -^ be not zero, the equihbriam will
as

be stable or unstable according as its sign is negative or positive. This leads to the

condition that r is respectively less or greater than z cos n which agrees with the

rule given in Art. 441.

If -,- = we have r= z cos n, so that the centre of gravity Ues on the circumference
as

of the circle of stability. Differentiating we have

^-^ /IN

ds"^ ds \zj

2 sin n cos ra sin n , ,

,

+ 2 (1 .

7-2 rp

Substituting for r and z we have

d6^ ds \p p'J \p p J \p PI

If this be not zero, the equilibrium is stable for displacements on one side of the

position of equilibrium and unstable for displacements on the other.

If^= also, we differentiate (1) again. After some reduction we find

ds^

d?<t> _ d^ fl\ 1/1 2\ _ tan7t d /1\ _ 3tan«n (l^^\

The equilibrium is stable or unstable according as this expression is negative or

positive.

If the transverse section be a circle or a straight line these expressions admit of

great simplification.

504. Ex. 1. A heavy body rests in neutral equiUbrium on a rough plane inclined

to the horizon at an angle n. Show that unless ^=tan n, the equilibrium is ^Ublo

for displacements on one side and unstable for displacements on the other. But if

this equality hold, the equilibrium is stable or unstable according as ^, is poaiUw

or negative. Here ds is measured along the arc in the durection down the plane.

Show also that these conditions imply that the equilibrium is sUble or nn«Ublo

according as the centre of the conic of closest contact to the upper body u without

or within the circle of stability.

Ex. 2. If a convex spherical surface rest on the summit of a S'^ «««*

spherical surface in neutral equilibrium, the equilibrium xs

'^"'"^
J":**;*'^^;

if the lower surface have its concavity upwards the eqnihbnum » stable or un.tia>U
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according as its radius is greater or less than twice that of the upper surface and

is really neutral if its radius is equal to twice that of the upper surface.

The moveable spherical surface in this example must of course be weighted

so that its centre of gravity is at such an altitude above the point of support that

the equilibrium is neutral to a first approximation. Thus when the radius of the

lower surface is twice its radius, its centre of gravity lies on its surface, i. e. at a

distance twice its radius from the point of contact. The centre of gravity is outside

or within the 'surface according as the radius of the lower surface is less or greater

than twice its radius, and when the lower surface is plane the centre of gravity lies

at the centre. In this last case also the equilibrium is really neutral.

505. Oscillations of Cylinders to the higher orders. To form the general

equation of motion of a cylinder oscillating about a position of equilibrium to any

degree of approximation.

Following the same notation as before and taking the figure of Art. 501, the

equation of Vis Viva is

where U is the force function and ft the radius of gyration of the body about its

centre of gravity. Differentiating this with regard to 9, as in Art. 448, we have

dr fde\' dU
'de'

The right-hand side of this equation is by Art. 340 the moment of the forces about

the instantaneous axis, and is therefore in our case equal to gr sin </>. Substituting

dr
for — from the subsidiary equations of Art. 501 the equation of motion is therefore

The method of proceeding is the same as that in Art. 502. We expand each

coefficient by Taylor's theorem in powers of 0, which is to be so chosen as to vanish

in the position of equilibrium. To do this we require the successive differentials of

these coefficients to any order expressed in terms of the initial values only of
<f>,

n,

and r. The first differentials are given in the subsidiary equations of Art. 501. To
find the others we continually differentiate these subsidiary equations, until we have

obtained as many differential coefficients as we require.

506. To form the equation to the first order. Let the initial or equilibrium

values of n and r be a and h. The equation is therefore

,-, a . n. d'U
ih^+k^)-^,= or sm<p.

We have to find r sin to the first power of 0. Now

d , . ^. dr . _ dd>
.

. . , /l cosjA
-y- (r sin </)) = -— sm <p + r -yz cos <p =zsin n sin A + rz cos d» I )

,

a0 do aff \z '' /

by substituting from the subsidiary equations. This by reduction becomes

— (r sin ^) = r cos ^-z cos (^-m).
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value of <p IS zero. The equation of motion is therefore

which is the same as that given in Art. 441.

507. To form the equation to the second order.

We have already found the first differential coefficient of rgln^. wo most
differentiate this again and retain only the terms which do not vanish when a = 0.
We have

The equation of motion to the second order is therefore

d^
{k^+ h'+2hz Bina.e)~ + hzsma(^^y

at- \dtj

/-„«^ i\ a . o I d 1 sin 2a ainoi 6^

__ . { ds Z ll a \ 2
This may be reduced to the form

-.„.,= ..(-)'„..

where «2_^<'08a-A hz sin a

» 91,2 , 1 ^^ i ^ ^ sin 2a sin a)

Supposing a not to be zero, we find as the solution

^=^ sin (at + B) +i:^A"-+ ^-^|^- A'- cos 2 (at + B),

where A and B are two undetermined constants, and the first term represent* the

first approximation. Thus it appears that the first approximation is Bubstantialljr

correct unless a be small, that is, unless the equilibrium is nearly neutral. Tbfl

effect of the small terms is to make the extent of the oscillation on the lower side of

the position of equilibrium slightly greater than that on the upper side.

608. Oscillations of Cones to the higher orders. To form the general equa-

tion of motion of a heavy cone rolling on a perfectlg rough fixed cone.

Let us follow the same line of argument with the same notation as in Art. 4J<8.

We have however one point of difference. Since the moving cone is not in cquili*

brium its centre of gravity is not in the vertical plane WOI. As before let the arcs

IG=r, IW=z, and let the angles GIC=n, WIC=yp.

Let be the angular velocity of the moving cone about its inBtantaneoaa axi<

01. Then by Art. 448,

-•S-l«^"-- <'•

where L is the moment of gravity about 01.

As the cone rolls, the point I moves along the intersection of the fixed cone

with the sphere. Let IP^ds be the arc described in a time dt. It will be con-

venient to take s as the co-ordinste by which the position of the cone is determined.
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By the same reasoning as in Art. 484 we find

ds sin(p+p')
Q:

dt Binp.siap''
(2).

S^-:::'

•>ide

We have now to find the moment of gravity about 01. We again use the same

argument as in Art. 485. We resolve gravity along and perpendicular to 01, the

former component has no moment, and the latter is g sinz. Let this latter com-

ponent act parallel to some straight line KG, then KWI is an arc in a vertical

plane. The moment required is then the product of resolved gravity into the

projection of OG on OH, where H is the pole of the arc KWI. Thus the moment
is gh sinz coaHG. To find cos ifG produce HG to cut KWI in M. Then in the

right-angled triangle GIM, we have sinGlf=sinGIsinGIJ[f. The moment L is

therefore

L= -gh sinr sinz sin(n-^) (3).

When the forms of the cones are known we can express K, r, z, n and ^ in terms

of s or any other co-ordinate we may choose. The equation of motion wiU then

be known. This process may be effected by the help of the four following sub-

sidiary equations

dr
:smn, = sin^

dn

ds

dj^

ds

= cotr cos7j-cot/)

= C0t2 COS^t-fCOtp'

.(4).

The proof of these is left to the reader. They may be shown by the same reasoning

as in the case of the cylinder with only such modifications as are made necessary

by using spherical instead of plane triangles.

509. To find the equation of viotion of a right cone oscillating about a position

of equilibrium to any degree of approximation.

Since the cone is a right cone, we have IC' constant. The equation of motion is

thereforeX2—= L, where O and I, have the values given in equations (2) and (3)

of Art. 508.

dt
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We notice that L = 0, and therefore n=^ in the position of e<]uiUbri««, La|
co-ordinate s be so chosen that it also vanishes in this posiiioa. We hate
fore now to expand il and L in powers of «. To effect this we om Tailor'*

orem, thus

_fdL\ fd^L\ ««

where the bracket implies that s is to be equal to zero afttr each diSerentiAtion

.^s been performed. Now these differentiations may all be performed without »ny
difl&culty, by differentiating the expression for L and continually Ru»»8lituiing (or

-J-,
—

, &c. their values given in the subsidiary equations. We may treat in

the same way.

The formation of the equation of motion is therefore reduced to the differentia-

tion of a known expression and the substitution of known functions.

We may use this method to obtain the equation of motion to the first power.

Thus we have

A-— — -ah— {siur smz sm(n- ^)1«.

Substituting for Q and retaining on the right-hand side only those t«rmi which

do not vanish when ^= n we obtain

K^ d\^ ( . , , sinpsinp' . . )

r-. = - \sm(z - r) cos n .—,

,,
- smr smzf «,

gh df^ I ^ ' sm(p + p)
'

which gives the same result as in Art. 483.

If the cone be not a right cone, we may express A'' in terms of r and « and

proceed in the same way.

510. Ex. A heavy right cone rests in neutral equilibrium on another riifhl

cone which is fixed in space, the vertices being coincident. Show that the c«iuation

of motion, including the squares of small quantities, is

K^ d^^_8inp^p;g.j^, _.^;^„^^Qt^-H2cotr)cosn-cotpl'J.
gh dt* sin(p + /)')

END OF THE FIRST VC>LL'ME.

2.»

K. D.
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